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Abstract

Imitation learning (IL) aims to learn a policy from expert demonstrations with-1

out reward signals. Previous methods such as behavior cloning (BC) work by2

learning one-step predictions, but seriously suffer from the compounding error3

problem; recent generative adversarial solution, though alleviates such problems4

in a discrepancy minimization view, is still limited in only matching single-step5

state-action distributions instead of long-term trajectories. To address the long-6

range effect, in this paper, we explore the potential to boost the performance of7

IL by regularizing the multi-step discrepancies. We first propose the multi-step8

occupancy measure matching formulation, where we extend the idea of matching9

single state-action pairs to sequences of multiple steps. Interestingly, theoretical10

analysis of the proposed multi-step algorithm reveals a trade-off between the roll-11

out discrepancy and the sampling complexity, making it non-trivial to select an12

appropriate step length T for the practical implementation. Inspired by the recent13

progress of integrating multi-armed bandits in curriculum learning, we further14

propose an automated curriculum multi-step occupancy measure matching algo-15

rithm named AutoGAIL, which automatically selects the appropriate step length16

during the training procedure. Compared with various multi-step GAIL baselines,17

AutoGAIL consistently achieves superior performance with satisfactory learning18

efficiency given different amount of demonstrations.19

1 Introduction20

Imitation learning (IL) approaches solve the learning from demonstrations task, where the reward21

is unknown and the agent can only get access to the expert’s demonstrations. Naive solutions, such22

as behavior cloning (BC) [4], simply treat it as a one-step supervised learning problem. Another23

kind of solutions, inverse reinforcement learning (IRL) [1], tries to first estimate the reward from the24

demonstrations and then train an online RL agent to induce the optimal policy. Recently, inspired25

by the progress of generative models, Ho and Ermon [16] proposes generative adversarial imitation26

learning (GAIL), which views IL as a discrepancy minimization problem and imitated the expert27

policy by an occupancy measure (OM) matching procedure.28

Perfect imitation corresponds to match the long-term rollout sequence of the expert. Unfortunately,29

algorithms mentioned above, though practically effective for a range of IL tasks, remain problematic30

on long-term imitation. The classic BC method heavily relies on the i.i.d assumption of each single31

step to learn the one-step predictions, which omits the long-term sequence matching. Thanks to the32

online training scheme, IRL and GAIL methods are capable of alleviating the long-term sequence33

matching problem by learning the policy from the estimated reward function or the discriminator.34

However, they are essentially limited in matching the single-step OM, which obstructs the policy35

to learn to match the long-term trajectory distribution. Though theoretically matching the 1-step36
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OMs is able to match the long-term sequence, in practice this optimal matching cannot be always37

achieved, where the small 1-step mistakes will eventually lead to an unacceptable large error from38

the long-step view.39

In this paper, to explicitly mitigate such long-term problems in IL, we extend the definition of the40

state or state-action occupancy from simple single-step to pieces of sequences, and introduce the41

idea of T -step OM. T -step OM is defined as the distribution of multi-step sequences of states and42

actions. This concept enables us to derive a novel algorithm where we can alleviate the long-term43

effect by directly conducting multi-step OM matching (i.e., match the sequence-level OM instead44

of the step-level OM), named multi-step GAIL (MS-GAIL). Intuitively, compared with the one-step45

OM discrepancy, the divergence of a multi-step OM can be much more informative and lead to better46

optimization of the gap between the agent and the expert. Starting from the intuitive idea, we further47

conduct a theoretical analysis of both rollout discrepancy and sample complexity, and demonstrate48

that the MS-GAIL algorithm always holds a tighter bound on single-step occupancy discrepancy.49

Interestingly, the theoretical results also reveal a trade-off between the rollout discrepancy and the50

sample complexity, i.e., we can further alleviate the long-term effect by minimizing a longer-step51

OM, but there is no free lunch and we have to pay much more training samples for that. Therefore,52

it is challenging to determine the best multi-step length given the fixed size of training samples.53

Inspired by the recent progress of combining multi-armed bandits with curriculum learning, we fur-54

ther propose an automated curriculum measure matching algorithm named AutoGAIL. AutoGAIL55

provides a flexible framework for multi-step OM matching, which can automatically select the ap-56

propriate sequence length to improve the sample efficiency as well as the final performance.57

In a nutshell, the contributions of this paper can be summarized as follows:58

1. We introduce the idea of T -step OM and propose the practical multi-step OM matching algo-59

rithm, i.e., MS-GAIL (Section 3).60

2. We analyze the rollout discrepancy and the sample complexity of MS-GAIL, and reveal a non-61

trivial trade-off between them (Section 4).62

3. We further propose an auto-curriculum framework of T -step OM matching algorithm that can63

automatically choose the sequence length to improve the final performance (Section 5).64

Finally, we evaluate MS-GAIL and AutoGAIL with various step length on several continuous con-65

trol benchmarks. Comprehensive experiments verify the trade-off between the rollout discrepancy66

and the sample complexity, and demonstrate the potential for improving the imitation performance67

via multi-step OM matching. Results also show that AutoGAIL successfully handles the challenge68

on determine the appropriate multi-step length and can always achieve the best performance as well69

as the sample efficiency.70

2 Preliminaries71

Notation. A Markov Decision Process (MDP) is defined by a tupleM = hS,A,M, ρ0, r, γi, where72

S is the set of states, A is the action space of the agent, M : S �A�S ! [0, 1] is the environment73

dynamics, ρ0 : S ! [0, 1] is the distribution of the initial state s0, and γ 2 [0, 1] is the discounted74

factor. The agent holds the policy π(ajs) : S � A ! [0, 1] to make decisions and receive rewards75

defined as r : S � A ! R. The objective is to find the optimal policy that maximize the expected76

sum of the discounted rewards with the entropy at each visited state:77

π� = arg max
�

E� [r(s, a)] + αH(π) , (1)

where H(π) , E�[� log π(ajs)] is the γ-discounted casual entropy [6] and α is the temperature78

hyperparameter to determine the relative importance of the entropy term. In this work we use the79

subscript to denote the timestep, e.g., st and the superscript is the order in a sequence, e.g., at.80

Many recent IL methods are built upon the concept of Occupancy Measure (OM), which is also the81

foundation of our approach. Formally, OM is defined as the discounted occurrence probability of82

states or state-action pairs when the agent interacts with the environment using policy π:83

ρ�(s, a) =

1X
t=0

γtP (st = s, at = ajπ) = π(ajs)
1X
t=0

γtP (st = sjπ) = π(ajs)ρ�(s). (2)

Note that ρ is unormalized and the normalization can be easily achieved by d� = (1 � γ)ρ� . With84

such a definition we can write down that E�[�] =
P
s;a ρ�(s, a)[�] = E(s;a)��� [�].85

2



Imitation Learning as 1-step Occupancy Measure Matching. Here we briefly review the conclu-86

sions from Ho and Ermon [16] and Ghasemipour et al. [11], which analyzed the connection between87

the IL problem and the 1-step OM matching problem. These conclusions help us to construct a88

theoretical analysis of our proposed method.89

Proposition 1 (Proposition 3.2 of Ho and Ermon [16]). Given the definition of RL procedure as90

Eq. (1) and IRL procedure as IRL (πE) = arg maxr �ψ(r) + (min�2��H(π)� E�[r(s, a)]) +91

E�E [r(s, a)], we have:92

RL � IRL (πE) = arg min
�

�H(π) + ψ�(ρ� � ρ�E ) (3)

This proposition indicates that RL with the reward recovered by a ψ-regularized IRL can actually93

learn a policy whose 1-step OM matches the expert’s measured by the convex function ψ�, i.e.,94

optimizing certain distance metrics of OM between the policy and expert can solve the IL problem.95

Proposition 2 (Appendix D of Ghasemipour et al. [11]). Considering the reward function regu-96

larizer as: ψf (r) = E��E (s;a) [f�(s, a) + r(s, a)] where f� is the convex conjugate of f , then we97

have:98

ψ�f (ρ�(s, a)� ρ�E (s, a)) = Df(ρ�(s, a)kρ�E (s, a)) (4)

RL � IRL (πE) = arg min
�

�H(π) + Df(ρ�(s, a)kρ�E (s, a)) (5)

This proposition illustrates that any f-divergence can be used for IL as long as we choose a spe-99

cific ψf . For example, GAIL [16] minimizes the JS divergence DJS (ρ�kρ�E )) while AIRL [10]100

minimizes the KL divergence DKL(ρ�kρ�E ).101

3 Imitation Learning as T -step Occupancy Measure Matching102

In this section, we first analyze the limitations of single-step discrepancy by two illustrative exam-103

ples. Then we propose the definition of T -step OM, and further extend the previous 1-step OM104

matching to T -step OM matching to overcome the shortages of previous methods.105

3.1 Limitations of 1-Step Discrepancy106

Ambiguity for determining a better policy in a single-step view. The first example is constructed107

on a simple ring MDP example to show the ambiguity for determining the optimality in a one-108

step view (Fig. 1(a)). As shown in the table, two behavior policies π1 and π2 differ with the109

expert policy πE only on a single state, resulting in the same KL divergence of the 1-step OM110

DKL(Pi(s, a)kPE(s, a)). However, the optimality can be determined in a multi-step view as we111

should match the long-term sequence. For example, π1 keeps a smaller 2-step divergence (i.e. ,112

DKL(Pi(s
1, a1, s2, a2)kPE(s1, a1, s2, a2))) and is better than π2. As the step gets longer, the opti-113

mality is more significant.114

Weak capacity for measuring single-step discrepancies. This example is constructed on a simple115

one-dimensional environment, aiming to describe how one-step error spreads to long-step. Specif-116

ically, the agent moves along the x-axis from the point 0.5 to the point 10 within an action space117

[0,1] (shown in Fig. 1(b)). The expert policy is a rectangular window function (blue), and the118

sub-optimal policies are Blackman window functions with different parameters (orange, red and119

green). With respect to the expert policy, the sub-optimal policies get worse as the index in-120

creases. We analyze the KL divergence ratio DKL(Pi(s;a)kPE(s;a))
DKL(P1(s;a)kPE(s;a)) , DKL(Pi(s

1;a1;s2;a2)kPE(s1;a1;s2;a2))
DKL(P1(s1;a1;s2;a2)kPE(s1;a1;s2;a2))121

and DKL(Pi(s
1;a1;��� ;s3;a3)kPE(s1;a1;��� ;s3;a3))

DKL(P1(s1;a1;��� ;s3;a3)kPE(s1;a1;��� ;s3;a3)) for different sub-optimal index i on 1-step, 2-step and122

3-step state-action sequence distribution. Apparently, even if the sub-optimalilties for different poli-123

cies seems similar in a single-step view (the 1-step bars shown in Fig. 1(b) right), the discrepancy124

can deteriorate much more as the step gets longer (the 2 and 3-step bars shown in Fig. 1(b) right).125

3The OM shown here is unnormalized, while we use the normalized ones to calculate the divergence.
4k-s denotes k-step for short.
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(a) Ring MDP example. Left: environment transi-
tions. Right: 1-step OM for different policies3and the
KL divergence in different step views4.

(b) One-dimensional environment. Left: different
policies. Right: Sub-optimality divergence ratios on
1� 3-step views.

Figure 1: Illustrative examples.

3.2 From 1-step toT-step126

To mitigate the limitation of the single-step discrepancy and solve the long-term effect, we explore127

the potential of directly regularizing the multi-step discrepancy. We start with the de�nition of the128

T-step OM:129

De�nition 1 (T-step Occupancy Measure). TheT-step OM is de�ned as the discounted occurrence130

probability of aT-step trajectory� T = f s0; a0; s1; a1; � � � ; sT � 1; aT � 1g that begins withs0; a0:131

� T
� (� T ) =

1X

t =0

 t P(st = s0; at = a0; � � � ; st + T � 1 = sT � 1; at + T � 1 = aT � 1j� ) : (6)

For simplicity, we will use the notation� to denote the 1-step OM� 1 in the following paper. An132

easy conclusion is that starting from the same state-action pairs0; a0, its correspondingT-step OM133

� T
� andH -step OM� H

� (H � T) are connected by the policy� and the dynamicsM as:134

� T
� (� T ) = � H

� (� H )
T � 1Y

t = H

� (at jst )M (st jst � 1; at � 1) : (7)

In particular, whenH = 1 , we have:135

� T
� (� T ) = � � (s0; a0)

T � 1Y

t =1

� (at jst )M (st jst � 1; at � 1) (8)

By de�nition, we extend the expectationw.r.t. the policy� as the expectation under theT-step OM:136

E� [�] ,
P

� T � T
� (� T )[�] = E� T � � T

�
[�]. Therefore the RL objective can be written in aT-step form:137

� � = arg max
�

E� T
�

�
r (� T )

�
+ �H (� ) ; (9)

wherer (� T ) , r (s0; a0).138

Now we are ready to extend 1-step conclusions toT-step OM matching. Speci�cally, we �rst show139

the one-one mapping between the policy set� and the set of� T -step OMsD(T) , f � T
� : � 2 � g,140

which enables us to construct the policy with theT-step OM:141

Lemma 1 (Theorem 2 of Syed et al. [23], Lemma 3.1 of Ho and Ermon [16]). If � 2 D (1), then�142

is the OM for� � , � (s; a)=
P

a0 � (s; a0), and� � is the only policy whose OM is� .143

ForT > 1, we are able to induce� from � T according to Eq. (7):144

Lemma 2. If � T 2 D (T), then� 2 D (1) is the unique 1-step OM corresponding to� T .145

Given Lemma 1 and Lemma 2, now we draw the following conclusions:146

Theorem 1 (Extension of Lemma 1). If � T 2 D (T), then � T is the T-step OM for� � T ,147

� (s0; a0)=
P

a0 � (s0; a0) where� is the corresponding 1-step OM found by Lemma 2, and� � T is148

the only policy whoseT-step OM is� T .149
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Theorem 1 indicates that we can recover the policy if we can match aT-step OM. Thence, similar150

properties of 1-step OM (Proposition 1 and Proposition 2) still hold forT-step OM:151

Proposition 3 (Extension of Proposition 1). Given the de�nition of RL procedure as Eq. (9) IRL152

procedure as:IRL  (� E ) = arg max r �  (r ) +
�
min � 2 � � H (� ) � E� T

�
[r (� T )]

�
+ E� T

� E
[r (� T )],153

we have154

RL � IRL  (� E ) = arg min
�

� H (� ) +  � (� T
� � � T

� E
) (10)

Proposition 4 (Extension of Proposition 2). Consider the reward function regularizer as: f (r ) =155

E� � T
� E

(s;a )

�
f � (� T ) + r (� T )

�
, wheref � is the convex conjugate off , then we have156

 �
f (� T

� � � T
� E

) = Df(� T
� (� T )k� T

� E
(� T )) (11)

RL � IRL  (� E ) = arg min
�

� H (� ) + Df(� T
� k� T

� E
) (12)

These extended conclusions suggest that it is theoretically sound to generalize previous IL solutions157

from 1-step OM matching toT-step OM matching, by replacing the state-action pair(s; a) as the158

T-step trajectory� T .159

Practical T-step Imitation Learning. In this part we provide an practical algorithm for optimizing160

the proposedT-step OM matching objective. Motivated by Ho and Ermon [16], we can simply161

derive an adversarial algorithm by choosing a speci�c regularizer , which actually minimizes the162

JS divergence DJS(� T
� k� T

� E
) between theT-step OM of the agent and the expert. In this way, the163

algorithm alternately updates the discriminatorDw and the policy� � following the gradients:164

r w L D = Ê� i [r w log(D T
w (� T ))] + Ê� T

E
[r w log(1 � D T

w (� T ))] (13)

r � L � = Ê� T

�
r � log � � (ajs)QT (s; a)

�
; (14)

whereQT (s; a) = Ê� [r̂ T (st ; at ) j s0 = s; a0 = a]. Note that, instead of operating on single-step165

state-action pairs, the discriminator now classi�es whether aT-step sequence� T is drawn from the166

expert distribution. And the reward function can be constructed using the discriminator as:167

r̂ T (s; a) , r̂ T (� T jst = s; at = a) = log D(� T ) (15)

This learning procedure actually can be viewed as aT-step generalization of GAIL [16], which we168

call multi-step GAIL (MS-GAIL). A detailed description of the algorithm can be found in Algo. 1.169

4 Theoretical Analysis170

While the proposed multi-step OM matching is conceptually simple, it is still important to investi-171

gate the underlying properties of the algorithm. In this section, we analyze rollout discrepancy and172

sample complexity of the proposed MS-GAIL.173

4.1 Discrepancy Analysis on Rollout Sequences174

We �rst study whether matching multi-step OMs results a better solution in a shorter-step view,175

through analyzing the discrepancy on rollout sequences. Let us rollout the policy� from s0
t at176

timestept for H step. Our desired goal is to match a long-term rollout sequence� H of the expert.177

Then the discrepancy of theH -step OM between the agent and the expert can be given by the178

following theorem.179

Theorem 2(Rollout Discrepancy of Multi-Step OM Matching). If the Kullback–Leibler divergence180

of twoT-step normalized OM is smaller than a certain error� � , i.e., DKL
�
� T

1 (� T )k� T
2 (� T )

�
� � � ,181

then we have that the discrepancy of theH -step normalized OM (H � T) is bounded by182

DTV
�
� H

1 (s; a)k� H
2 (s; a)

�
�

p
2� � (T � H + 1) : (16)

The proof is shown in Appendix B.1. Theorem 2 indicates that matching a long step discrepancy183

signi�cantly contributes to matching a shorter sequence. Speci�cally, with the same error, minimiz-184

ing a multi-step OM bene�ts much more than directly matching the single-step OM. This veri�es185

our observation in the motivating example shown in Fig. 1(a), which suggests that utilizing the186

multi-step OM matching can bene�t the IL tasks.187
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4.2 Sample Complexity Analysis on Different Length188

In this section we concentrate on the sample complexity of our proposed algorithm. Based on the189

generalization theory in GAN [2, 26] and previous sample complexity analysis in IL [24], we �rst190

introduce the de�nition of the generalization of multi-step OM matching:191

De�nition 2 (Generalization of Occupancy Measure Matching). GivenT-step OM ^� T
� E

, an empiri-192

cal distribution of� T
� E

with mT samples obtained by� E , and aT-step OM� T
� generalizes under the193

distance between two distributionsd(�; �) with error � if the following holds with high probability:194

jd(� T
� ; � T

� E
) � d(�̂ T

� ; �̂ T
� E

)j � � ; (17)

where ^� T
� and �̂ T

� E
are the empirical distributions ofmT sequence-level samples from� � and� � E195

respectively.196

With the above de�nition, now we start to analyze the sample complexity of the proposed MS-GAIL,197

which trains the policy and the discriminator within the generative adversarial framework. We �rst198

present the sample complexity theorem here:199

Theorem 3 (Lemma 6.3 of Xu et al. [24]). Assume that the policy� optimizes GAIL objective200

up to an� error and all discriminator netsD in the discriminator setC are bounded by� , i.e.,201

kDk1 � � ; 8D 2 C. Let R̂ � ( m )
� E

(C) denote the empirical Rademacher complexity ofC. Then with202

probability at least1 � � , the following inequality holds:203

DTV(� T
� k� T

� E
) �

p
2� F ;�

�
inf

� 2 �

q
� DTV(� T

� k� T
� E

)+
p

� +2
q

R̂ (m 1 =T )
� � E

(C)+2�

s
2T log(1=� )

m1

�
;

(18)

where� C;� = sup
� 2 �

k log( � T
�

� T
� E

)kC;1 < 1 andm1 is the number of state-action pairs. The proof204

of Theorem 3 can be found in Xu et al. [24], where the only difference is the sample number.205

Since we are matching theT-step OM, the acquired samples have to beT-step sequences such that206

m1 = TmT . Therefore, to get the same bound, for a larger step lengthT, it will need much more207

training samples proportional to the number of samples in 1-step OM matching.208

Summary. Combining the conclusions from Theorem 2 and Theorem 3, we derive a trade-off209

between the performance and the sample complexity. Particularly, given the same capacity on the210

error of the optimization, we would like to match a multi-step OM (with a step lengthT as long211

as it can be) to get a better �nal performance; unfortunately, to converge to such an optimal policy,212

a T-step OM matching objective requiresT times number of samples compared with a 1-step OM213

matching algorithm. Thus, to achieve a better result, we need to carefully choose the appropriate214

step lengthT. In the next part, we will elaborate on how to effectively mitigate the trade-off via an215

automated curriculum strategy.216

5 Automated Curriculum Multi-Step Imitation Learning217

The trade-off between the performance and the sample complexity makes it challenging to determine218

an appropriate step lengthT under different scenarios. As shown in Section 4, we require much more219

state-action training samples if we want to match longer OMs for better imitation results. There-220

fore, multi-step OM matching can be hard at the beginning of the online training schedule when221

the training samples are quite limited. A natural solution for the challenge is to expand the step222

length as the agent collects more samples during interacting with the environment. Speci�cally,223

the step length should be selected as the one which provides the most informative momentum for224

updating the policy, which motivates us to provide a syllabus of curriculum along with the training225

procedure. Curriculum learning automatically designs and constructs acurriculumas a sequence of226

tasksK 1; : : : ; K N to be learned, so that the ef�ciency or performance on the target taskK t can be227

improved. In our setting, correspondingly, the target task is imitation learning, and the curriculum228

at each training iteration is the chosen stepT of T-step OM matching. Instead of appropriate hand-229

craft curriculum, we apply an elegant automated curriculum framework from [14] forT-step OM230

matching, which also provides ef�cient and �exible training for IL tasks.231
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Speci�cally, this formulation takes a curriculum containingN tasks as an adversarialN -armed ban-232

dit [8], where an agent selects a sequence of armsa1 : : : aT overT rounds of play (at 2 f 1; : : : ; N g)233

and yields a rewardr t for that arm after each round. The goal is to maximize the sum of rewards234

with an adaptive policy, and they employed a classic adversarial bandits algorithm named Exp3.S [3]235

to handle the problem, where the optimal arm is only responsible for a portion of history. On round236

t, the stochastic policy� t for selecting an armi is de�ned by a set of incrementally multiplicative237

weightwt;i :238

� EXP3.S
t (i ) =

ew t;i

P N
j =1 ew t;j

+
�
N

(19)

wt;i = log
h
(1 � � t ) exp

n
wt � 1;i + � ~r �

t � 1;i

o
+

� t

N � 1

X

j 6= i

exp
n

wt � 1;j + � ~r �
t � 1;j

o i
;

wherew1;i = 0 , � t = t � 1, ~r �
t;i = r t I [a s = i ] + �

� s ( i ) is the reward for selecting armi , and� is the step size.239

In practice, the received reward̂r t is adaptively rescaled to lie in the interval[� 1; 1] as:240

r t =

8
><

>:

� 1 if r̂ t < q lo
t

1 if r̂ t > q hi
t

2( r̂ t � qlo
t )

qhi
t � qlo

t
� 1 otherwise;

(20)

whereqlo
t andqhi

t are 20th and 80th percentiles of historical unscaled rewards up to timet: R t =241

f r̂ i gt � 1
i =1 .242

Therefore, to learn an adaptive policy for selecting the curriculum, we need to devise a reward to243

guide the policy to select the appropriate task. Ideally, we would like to choose a curriculum that244

can maximize the optimization rate of the target objective, and thus the constructed reward should245

re�ect this optimization rate,e.g., the decreased value of the loss function. Since the target objective246

of method is represented by a certain distance forT-step OM matching, a natural idea is to utilize the247

JS divergence between twoT-step OMs DJS(� T
� k� T

� E
) as the loss measure, which could be estimated248

by the loss of the discriminator:249

� DJS(� T
� k� T

� E
) � L (D T

w ) = Ê� i [log(D T
w (� T ))] + Ê� E [log(1 � D T

w (� T ))] : (21)

Similar to GANs [12], the objective of the discriminatorL (Dw ) can re�ect the JS divergence of250

the trajectories between the agent and then expert. Hence, we can take changing range of the loss251

value before and after each training iteration to evaluate the optimization rate, and take improvement252

margin as reward to guide the policy optimization. Formally, we abuse the symbolr k as the reward253

for the curriculum selection policy atkth training iteration:254

r k = L k (D T
w ) � L k � 1(D T

w ) ; (22)

whereT is the task selected atkth iteration by the policy,i.e., � EXP3.S(k) = T.255

It is worth noting that the chosen curriculum indeed re�ects the learning progress. Intuitively, if256

the reward for curriculumT is higher than the others, we would like to believe thatT-step OM257

has the most signi�cant discrepancy and should be optimized in priority. We �nd it useful for258

improving the sample ef�ciency and alleviate the training instability and the gradient vanishing259

problem, which is common in adversarial training [7]. In practice, we keep and train a limited260

number ofT discriminators asT curriculums, and update the weight of each curriculum following261

the rules of theEXP3.S algorithm (Eq. (19)). These weights is used to construct the higher-level262

policy � EXP3.S whose outputs are taken as a syllabus for different step lengthsT, enabling it to263

automatically create stages of curriculum. To prevent the randomness during early training period,264

we simply adopt an initialized curriculum instead of utilizing� EXP3.S until n training iterations. This265

resulting algorithm is named automated curriculum GAIL (AutoGAIL). Details of the algorithm can266

be found in Algo. 2.267

6 Related Work268

Perfect imitation of single-step behaviors corresponds to match the long-term trajectories of the ex-269

pert. However, once there is a gap in the single-step, the discrepancy enlarges much more as the270
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sequence becomes longer due to the error accumulation. This can be understood as the long-term271

effect of the imitation learning (IL) tasks, which existed in most of the previous solutions. For exam-272

ple, behaviour cloning (BC) methods [18, 4], adopts supervised training which leads to the notorious273

compounding error problem [21, 20]. The recent popular generative adversarial methods GAIL [16],274

bene�ts from interacting with the environment with less compounding error [24]. However, GAIL275

essentially matches a single-step occupancy measure (OM), instead of matching a sequence. In our276

work, we further ease the long-term effect by proposing multi-step OM matching, along with an277

automated curriculum framework for selecting appropriate step length for optimization.278

Curriculum learning (CL) adopts a curriculum of progressive tasks to accelerate the neural network's279

training [9, 5], which has been widely used in complicated tasks [19, 13]. A typical CL solution280

is using hand-crafted curriculum [25] by assuming the dif�culty order of all the tasks, which is281

usually hard to be quanti�ed. As an improvement, Schmidhuber [22] proposes automatic curriculum282

generation and utilizes program search to construct an asymptotically optimal algorithm for this283

problem. Our automated strategy is built upon the work of Graves et al. [14], which proposes284

automated curriculum learning by learning a policy to adaptively decide the task during the training,285

based on the so-called learning progress [17] and multi-armed bandit algorithm [8]. In our setting,286

we let the agent choose the appropriate step length as the best curriculum through the training time287

on multi-step OM matching, so as to improve the sample ef�ciency and the �nal performance.288

7 Experiments289

We conduct several experiments to investigate the following research questions:290

RQ1 Does multi-step occupancy measure matching have the potential for improvement?291

RQ2 Does and how does the automated strategy of AutoGAIL enhance the performance?292

RQ3 What are the key ingredients of AutoGAIL that contribute to the improvements?293

To answer RQ1, we evaluate 1� 4-step GAIL and AutoGAIL on various continuous control tasks294

with different numbers of trajectories. Regarding RQ2, we compare AutoGAIL with a random295

curriculum selection strategy by showing the learning ef�ciency with the corresponing curriculum296

during the training procedure. Finally, we conduct ablation studies on two key hyperparameters (the297

maximum step lengthT and the explration ratio� of the high-level policy) of AutoGAIL to address298

RQ3. Due to the space limit, we leave experimental details and additional results in Appendix C.299

Potential in multi-step. Quantitative experiments are conducted to investigate how multi-step GAIL300

affects the performance when the step lengthT varies. In particular, we test1 � 4-step GAIL on301

continuous control benchmarks: Hopper, Walker2d, HalfCheetah and Ant. For all environments,302

we �rst train an Soft Actor-Critic (SAC) [15] agent to collect expert demonstrations with varying303

trajectory counts and then train the imitation agents with such data. All algorithms are trained with304

exactly the same amount of environment interaction and evaluated by a deterministic policy. To305

measure the imitation ef�cacy over the sequence, we use the relative return accumulated over the306

trajectories compared with expert. Fig. 2 depicts the results, which illustrates that there does exist a307

trade-off between the rollout discrepancy and the sample complexity, according to the chosen stepT.308

Speci�cally, as is observed, with suf�cient expert trajectories, 4-step GAIL can always achieve the309

best performance than the other GAIL baselines (except AutoGAIL), but it has no advantage when310

there are fewer trajectories. Besides, the optimal choice of the step lengthT also varies with different311

numbers of trajectories on different tasks. However, in most of times, a multi-step solution improves312

the performance over 1-step GAIL, showing the potential for better sequence-level imitation.313

Analysis for automated strategy.Notice that we have illustrated the superior performance of Au-314

toGAIL among different numbers of demonstrations in Fig. 2, where we provide AutoGAIL with315

4 (1 � 4) kinds of curriculum choice. Beni�ting from the automated curriculum selection strategy316

that balances the trade-off between the rollout discrepancy and the sample complexity, AutoGAIL317

reaches the best performance on almost all tasks. The complete learning curves, shown in Ap-318

pendix C.3, also provides strong evidence on its good learning ef�ciency against above multi-step319

GAIL baselines. Beyond the performance, we also analyze if the curriculum provides instructive320

guidance through the training of the imitation agents. To this end, based on 4 expert trajectories, we321

compare AutoGAIL with a random strategy algorithm (denoted asRandom Multi-step GAIL) that322

selects the step lengthT in a randomized way at each training iteration. As shown in Fig. 3, that323

the high-level policy is well learned to provide reasonable choices on the selection of the curricu-324

lum, which accomplishes the higher learning ef�ciency against the random strategy in most of the325
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Figure 2: Performance of differentT -step GAILs. The y-axis is average return over 5 random seeds, scaled so
that the expert achieves 1 and a random policy achieves 0.

Figure 3: Curriculum selection alongside the training on 4 expert demonstrations over 5 random seeds.

cases. To explain the rationality of the curriculum, let us �rst conclude from Fig. 2: on Hopper,326

Walker and Ant, 3-step GAIL and 4-step GAIL have the ability of reaching the better performances327

than 1-step and 2-step methods; on the contrary, 2-step GAIL and 3-step GAIL are good enough on328

HalfCheetah. As a result, AutoGAIL tends to choose a longer-step curriculum as the training goes329

on Hopper, Walker and Ant, when the number of samples are no longer limited; on the other hand,330

AutoGAIL does not even take a 4-step curriculum on HalfCheetah but stays at the 2-step curriculum331

for a long time. To our surprise, on Walker, a randomized strategy can achieve a similar result as332

good as AutoGAIL. This indicates the advantage of using a multi-step OM matching objective that333

even a random step length (instead of 1-step always) is bene�cial for imitation learning. Complete334

training results on different numbers of demonstrations are available in Appendix C.3.335

Figure 4: Ablation study.

Ablation study. AutoGAIL has two important336

hyperparameters, namely, the maximum step337

lengthT and the exploration ratio� of the high-338

level policy � EXP3. To go deep into the algo-339

rithm, we further perform a diverse set of anal-340

yses on assessing the impact of these two hy-341

perparameters under 4 expert trajectories. The342

comparison results are plotted in Fig. 4 and the343

detailed quantitive results is provided in Ap-344

pendix C.3. A brief conclusion is that 1) a small value ofT limits the ability of AutoGAIL and345

the performance can hardly improve whenT is large enough for the task; and 2) the exploration346

ratio slightly affects the �nal performance of AutoGAIL and a greedy choice (� = 0 ) also keeps a347

good result. Nevertheless, all the variants consistently outperform 1-step GAIL.348

8 Conclusion349

In this paper we propose multi-step occupancy measure (OM) matching to alleviate the long-term350

effect in imitation learning tasks. Based on the analysis of the trade-off between the sample com-351

plexity and the rollout discrepancy, we �nd it challenging to determine appropriate step length in352

practice. Therefore, we further propose AutoGAIL that constructs automated curriculum learning353

for multi-step OM matching by learning a high-level policy. AutoGAIL chooses the curriculum on354

the current level of the agent and is able to provide a good result both on the learning ef�ciency and355

the �nal performance.356
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