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Abstract

Imitation learning (IL) aims to learn a policy from expert demonstrations with-
out reward signals. Previous methods such as behavior cloning (BC) work by
learning one-step predictions, but seriously suffer from the compounding error
problem; recent generative adversarial solution, though alleviates such problems
in a discrepancy minimization view, is still limited in only matching single-step
state-action distributions instead of long-term trajectories. To address the long-
range effect, in this paper, we explore the potential to boost the performance of
IL by regularizing the multi-step discrepancies. We first propose the multi-step
occupancy measure matching formulation, where we extend the idea of matching
single state-action pairs to sequences of multiple steps. Interestingly, theoretical
analysis of the proposed multi-step algorithm reveals a trade-off between the roll-
out discrepancy and the sampling complexity, making it non-trivial to select an
appropriate step length 7" for the practical implementation. Inspired by the recent
progress of integrating multi-armed bandits in curriculum learning, we further
propose an automated curriculum multi-step occupancy measure matching algo-
rithm named AutoGAIL, which automatically selects the appropriate step length
during the training procedure. Compared with various multi-step GAIL baselines,
AutoGAIL consistently achieves superior performance with satisfactory learning
efficiency given different amount of demonstrations.

1 Introduction

Imitation learning (IL) approaches solve the learning from demonstrations task, where the reward
is unknown and the agent can only get access to the expert’s demonstrations. Naive solutions, such
as behavior cloning (BC) [4], simply treat it as a one-step supervised learning problem. Another
kind of solutions, inverse reinforcement learning (IRL) [1], tries to first estimate the reward from the
demonstrations and then train an online RL agent to induce the optimal policy. Recently, inspired
by the progress of generative models, Ho and Ermon [16] proposes generative adversarial imitation
learning (GAIL), which views IL as a discrepancy minimization problem and imitated the expert
policy by an occupancy measure (OM) matching procedure.

Perfect imitation corresponds to match the long-term rollout sequence of the expert. Unfortunately,
algorithms mentioned above, though practically effective for a range of IL tasks, remain problematic
on long-term imitation. The classic BC method heavily relies on the i.i.d assumption of each single
step to learn the one-step predictions, which omits the long-term sequence matching. Thanks to the
online training scheme, IRL and GAIL methods are capable of alleviating the long-term sequence
matching problem by learning the policy from the estimated reward function or the discriminator.
However, they are essentially limited in matching the single-step OM, which obstructs the policy
to learn to match the long-term trajectory distribution. Though theoretically matching the 1-step
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OMs is able to match the long-term sequence, in practice this optimal matching cannot be always
achieved, where the small 1-step mistakes will eventually lead to an unacceptable large error from
the long-step view.

In this paper, to explicitly mitigate such long-term problems in IL, we extend the definition of the
state or state-action occupancy from simple single-step to pieces of sequences, and introduce the
idea of T-step OM. T'-step OM is defined as the distribution of multi-step sequences of states and
actions. This concept enables us to derive a novel algorithm where we can alleviate the long-term
effect by directly conducting multi-step OM matching (i.e., match the sequence-level OM instead
of the step-level OM), named multi-step GAIL (MS-GAIL). Intuitively, compared with the one-step
OM discrepancy, the divergence of a multi-step OM can be much more informative and lead to better
optimization of the gap between the agent and the expert. Starting from the intuitive idea, we further
conduct a theoretical analysis of both rollout discrepancy and sample complexity, and demonstrate
that the MS-GAIL algorithm always holds a tighter bound on single-step occupancy discrepancy.
Interestingly, the theoretical results also reveal a trade-off between the rollout discrepancy and the
sample complexity, i.e., we can further alleviate the long-term effect by minimizing a longer-step
OM, but there is no free lunch and we have to pay much more training samples for that. Therefore,
it is challenging to determine the best multi-step length given the fixed size of training samples.
Inspired by the recent progress of combining multi-armed bandits with curriculum learning, we fur-
ther propose an automated curriculum measure matching algorithm named AutoGAIL. AutoGAIL
provides a flexible framework for multi-step OM matching, which can automatically select the ap-
propriate sequence length to improve the sample efficiency as well as the final performance.

In a nutshell, the contributions of this paper can be summarized as follows:

1. We introduce the idea of T-step OM and propose the practical multi-step OM matching algo-
rithm, i.e., MS-GAIL (Section 3).

2. We analyze the rollout discrepancy and the sample complexity of MS-GAIL, and reveal a non-
trivial trade-off between them (Section 4).

3. We further propose an auto-curriculum framework of 7T-step OM matching algorithm that can
automatically choose the sequence length to improve the final performance (Section 5).

Finally, we evaluate MS-GAIL and AutoGAIL with various step length on several continuous con-
trol benchmarks. Comprehensive experiments verify the trade-off between the rollout discrepancy
and the sample complexity, and demonstrate the potential for improving the imitation performance
via multi-step OM matching. Results also show that AutoGAIL successfully handles the challenge
on determine the appropriate multi-step length and can always achieve the best performance as well
as the sample efficiency.

2 Preliminaries

Notation. A Markov Decision Process (MDP) is defined by a tuple M = hS, A, M, po, r, yi, where
S is the set of states, A is the action space of the agent, M : S A S ¥ [0, 1] is the environment
dynamics, pg : S ¥ [0, 1] is the distribution of the initial state sg, and vy 2 [0, 1] is the discounted
factor. The agent holds the policy w(ajs) : S A ¥ [0,1] to make decisions and receive rewards
definedasr : S A ¥ R. The objective is to find the optimal policy that maximize the expected
sum of the discounted rewards with the entropy at each visited state:

m =argmaxE [r(s,a)] +aH(x), (1)

where H(m) , E [ logm(ajs)] is the «y-discounted casual entropy [6] and « is the temperature
hyperparameter to determine the relative importance of the entropy term. In this work we use the
subscript to denote the timestep, e.g., st and the superscript is the order in a sequence, e.g., a®.

Many recent IL methods are built upon the concept of Occupancy Measure (OM), which is also the
foundation of our approach. Formally, OM is defined as the discounted occurrence probability of
states or state-action pairs when the agent interacts with the environment using policy 7:

X . - X - -
p (s,0) = 7'P(se=s,ac = ajm) =7(ajs)  7P(se = sim) =7(ajs)p (s). (2

t=0 t=0
Note that p is unormalized and the normalization gan be easily achieved by d = (1 ~v)p . With
such a definition we can write down thatE [] = ,p (s,0)[]=E@a) []
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Imitation Learning as 1-step Occupancy Measure Matching. Here we briefly review the conclu-
sions from Ho and Ermon [16] and Ghasemipour et al. [11], which analyzed the connection between
the IL problem and the 1-step OM matching problem. These conclusions help us to construct a
theoretical analysis of our proposed method.

Proposition 1 (Proposition 3.2 of Ho and Ermon [16]). Given the definition of RL procedure as
Eq. (1) and IRL procedure as IRL (mg) =argmax, ¢(r)+(min 2 H(w) E [r(s,a)])+
E _[r(s, a)], we have:

RL IRL (mg) =argmin H(m)+v¢ (p  p ¢) 3)

This proposition indicates that RL with the reward recovered by a 1/-regularized IRL can actually
learn a policy whose 1-step OM matches the expert’s measured by the convex function % , i.e.,
optimizing certain distance metrics of OM between the policy and expert can solve the IL problem.

Proposition 2 (Appendix D of Ghasemipour et al. [11]). Considering the reward function regu-
larizer as: Ye(r) = E _(s:2) [f (s,a) +r(s,a)] where f is the convex conjugate of f, then we
have:

wf(p (S7a) P E(S?a)) :Df(p (Saa)kp E(S7a)) (4)
RL IRL (mg) =argmin H(w) + Ddp (s,a)kp =(s,a)) (5)

This proposition illustrates that any f-divergence can be used for IL as long as we choose a spe-
cific ¢¢. For example, GAIL [16] minimizes the JS divergence Djs (p kp o)) while AIRL [10]
minimizes the KL divergence Dxi.(p kp ).

3 Imitation Learning as 7'-step Occupancy Measure Matching

In this section, we first analyze the limitations of single-step discrepancy by two illustrative exam-
ples. Then we propose the definition of T'-step OM, and further extend the previous 1-step OM
matching to T-step OM matching to overcome the shortages of previous methods.

3.1 Limitations of 1-Step Discrepancy

Ambiguity for determining a better policy in a single-step view. The first example is constructed
on a simple ring MDP example to show the ambiguity for determining the optimality in a one-
step view (Fig. 1(a)). As shown in the table, two behavior policies 73 and 7 differ with the
expert policy mg only on a single state, resulting in the same KL divergence of the 1-step OM
D (Pi(s, a)kPe (s, a)). However, the optimality can be determined in a multi-step view as we
should match the long-term sequence. For example, w1 keeps a smaller 2-step divergence (i.e. ,
Dii (Pi(st, at, 52, a®)kPz (s, at, 52, a?))) and is better than 7. As the step gets longer, the opti-
mality is more significant.

Weak capacity for measuring single-step discrepancies. This example is constructed on a simple
one-dimensional environment, aiming to describe how one-step error spreads to long-step. Specif-
ically, the agent moves along the x-axis from the point 0.5 to the point 10 within an action space
[0,1] (shown in Fig. 1(b)). The expert policy is a rectangular window function (blue), and the
sub-optimal policies are Blackman window functions with different parameters (orange, red and
green). With respect to the expert policy, the sub-optimal policies get worse as the index in-
Dir (Pi(s;@)kPe(s;ia)) Dr(Pi(stiatis?;a®)kPe (stiatis?;a?))
DkL(P1(s;a)kPe(s;a)) > DkiL(P1(st;at;s?;a?)kPe (s1;at;s%;a?))

creases. We analyze the KL divergence ratio

Di(Pi(stial;  ;s%a®)kPe(stial;  ;s%ia® . : . .
and thgplgl;zl; ;23;23%&21;21; ;23;23%; for different sub-optimal index ¢ on 1-step, 2-step and

3-step state-action sequence distribution. Apparently, even if the sub-optimalilties for different poli-
cies seems similar in a single-step view (the 1-step bars shown in Fig. 1(b) right), the discrepancy
can deteriorate much more as the step gets longer (the 2 and 3-step bars shown in Fig. 1(b) right).

3The OM shown here is unnormalized, while we use the normalized ones to calculate the divergence.
4k-s denotes k-step for short.
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(@) Ring MDP example. Left: environment transi{b) One-dimensional environment. Left: different
tions. Right: 1-step OM for different policidand the policies. Right: Sub-optimality divergence ratios on
KL divergence in different step views 1 3-step views.

Figure 1: lllustrative examples.
3.2 From 1-step toT -step

To mitigate the limitation of the single-step discrepancy and solve the long-term effect, we explore
the potential of directly regularizing the multi-step discrepancy. We start with the de nition of the
T-step OM:

De nition 1 (T-step Occupancy Measure)heT -step OM is de ned as the discounted occurrence
probability of aT-step trajectory T = fs%;a% st;al; ;sT ;a’ lgthat begins witts?; al:

%
HEE ‘P(st=s%a=2a% st 1=s Yasr i=a ') (6)
t=0

For simplicity, we will use the notation to denote the 1-step OM in the following paper. An
easy conclusion is that starting from the same state-actiosia?, its corresponding -step OM
T andH-step OM " (H  T) are connected by the policyand the dynamicM as:

N1
T(hH= """ (@jshHM(s'js' Ha ) (7
t=H
In particular, wherH = 1, we have:
1
T( T): (SO;aO) (atjs’[)M (Stjst l;at 1) (8)
t=1

By de nilgon, we extend the expectatiomr.t. the policy as the expectation under thestep OM:
E[], + "(NI]=E . 7[] Therefore the RL objective can be written ifT estep form:

=argmaxE -+ r( ") + H (); 9)

wherer( T), r(s%a.

Now we are ready to extend 1-step conclusion§ tstep OM matching. Speci cally, we rst show
the one-one mapping between the policy seind the set of T-step OMsD(T) , f T: 2 g,
which enables us to construct the policy with thestep OM:

Lemma 1 (Theorem 2 of Spged et al. [23], Lemma 3.1 of Ho and Ermon [1&]) 2 D (1), then
istheOMfor , (s;a)= L (s;a),and isthe only policy whose OM is

ForT > 1, we are able to inducefrom T according to Eq. (7):
Lemma?2.If T 2D(T),then 2 D(1) is the unique 1-step OM corresponding tb.

Given Lemma 1 and Lemma 2, now we draw the following conclusions:

Theorem 4 (Extension of Lemma 1) If T 2 D(T), then T is the T-step OM for -
(s%;a%=" o (s°;@%) where is the corresponding 1-step OM found by Lemma 2, andis

the only policy whos& -step OM is .
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Theorem 1 indicates that we can recover the policy if we can maictstep OM. Thence, similar
properties of 1-step OM (Proposition 1 and Proposition 2) still holdfetep OM:

Proposition 3 (Extension of Proposition 1)Given the de nition of RL procedure as Eq. (9) IRL
procedure aslRL ( g)=argmax, (r)+ min o H() E=+[r( ") +E v [r( )}
we have

RL IRL (g)=argmin H()+ (T 1) (10)

Proposition 4 (Extension of Proposition 2)Consider the reward function regularizer as; (r) =

E T (sia) f (T)+r(T),wheref isthe convex conjugate bf then we have
L (s
f(T 0 T)ED TR T (11)
RL IRL ( g)=argmin H( )+ Dy Tk 7)) (12)

These extended conclusions suggest that it is theoretically sound to generalize previous IL solutions
from 1-step OM matching td -step OM matching, by replacing the state-action ggj) as the
T-step trajectory T.

Practical T-step Imitation Learning. In this part we provide an practical algorithm for optimizing
the proposed -step OM matching objective. Motivated by Ho and Ermon [16], we can simply
derive an adversarial algorithm by choosing a speci ¢ regularizerhich actually minimizes the
JS divergence B Tk TE) between thel -step OM of the agent and the expert. In this way, the
algorithm alternately updates the discrimindigy and the policy following the gradients:

rwkP? = E [r wlog(Dy( "N+ Eg[r wlog(l Dy ( )] (13)
rL=E-r log (as)Q"(s;a) ; (14)

whereQT (s;a) = E [AT(si;a)jSo = S;a = a]. Note that, instead of operating on single-step
state-action pairs, the discriminator now classi es wheth&rstep sequence’ is drawn from the
expert distribution. And the reward function can be constructed using the discriminator as:

rl(s;a), PT( Tjs'=s;a=a)=logD( ") (15)

This learning procedure actually can be viewed dsstep generalization of GAIL [16], which we
call multi-step GAIL (MS-GAIL). A detailed description of the algorithm can be found in Algo. 1.

4 Theoretical Analysis

While the proposed multi-step OM matching is conceptually simple, it is still important to investi-
gate the underlying properties of the algorithm. In this section, we analyze rollout discrepancy and
sample complexity of the proposed MS-GAIL.

4.1 Discrepancy Analysis on Rollout Sequences

We rst study whether matching multi-step OMs results a better solution in a shorter-step view,
through analyzing the discrepancy on rollout sequences. Let us rollout the pofigm s? at
timestept for H step. Our desired goal is to match a long-term rollout sequeticef the expert.
Then the discrepancy of thd -step OM between the agent and the expert can be given by the
following theorem.

Theorem 2(Rollout Discrepancy of Multi-Step OM Matching)f the Kullback—Leibler divergence
of two T -step normalized OM is smaller than a certain error,i.e., Dq. {( ")k 2( T) ,
then we have that the discrepancy of thestep normalized OMH  T) is bounded by

Drv Y (s;a)k 4 (s;a) pT(T H+1): (16)

The proof is shown in Appendix B.1. Theorem 2 indicates that matching a long step discrepancy
signi cantly contributes to matching a shorter sequence. Speci cally, with the same error, minimiz-
ing a multi-step OM bene ts much more than directly matching the single-step OM. This veri es
our observation in the motivating example shown in Fig. 1(a), which suggests that utilizing the
multi-step OM matching can bene t the IL tasks.
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4.2 Sample Complexity Analysis on Different Length

In this section we concentrate on the sample complexity of our proposed algorithm. Based on the
generalization theory in GAN [2, 26] and previous sample complexity analysis in IL [24], we rst
introduce the de nition of the generalization of multi-step OM matching:

De nition 2 (Generalization of Occupancy Measure Matchin@jvenT -step OM fE , an empiri-

cal distribution of TE with my samples obtained byt , and aT-step OM T generalizes under the
distance between two distributiodé ; ) with error if the following holds with high probability:

jdc T T de AT 17)
where 7 and "TE are the empirical distributions aht sequence-level samples fromand

respectively.

With the above de nition, now we start to analyze the sample complexity of the proposed MS-GAIL,
which trains the policy and the discriminator within the generative adversarial framework. We rst
present the sample complexity theorem here:

Theorem 3 (Lemma 6.3 of Xu et al. [24]) Assume that the policy optimizes GAIL objective

up to an error and all discriminator netd in the discriminator seC are bounded by , i.e.,

kD kq : 8D 2 C. LetR (m)(C) denote the empirical Rademacher complexit€.oThen with

probability at leastL | the foEIIowing inequality holds:

s
. q q_— -
D Tk T Z e it Dl Tk T+ P e ROET(gen  ZTOED
1
(18)
where ¢ = supklog(——)ke1 < 1 andmj is the number of state-action pairs. The proof
2 E

of Theorem 3 can be found in Xu et al. [24], where the only difference is the sample number.
Since we are matching thie-step OM, the acquired samples have tdTbstep sequences such that
m; = Tmy. Therefore, to get the same bound, for a larger step lehgthwill need much more
training samples proportional to the number of samples in 1-step OM matching.

Summary. Combining the conclusions from Theorem 2 and Theorem 3, we derive a trade-off
between the performance and the sample complexity. Particularly, given the same capacity on the
error of the optimization, we would like to match a multi-step OM (with a step lefigds long

as it can be) to get a better nal performance; unfortunately, to converge to such an optimal policy,
aT-step OM matching objective requir@stimes number of samples compared with a 1-step OM
matching algorithm. Thus, to achieve a better result, we need to carefully choose the appropriate
step lengthl. In the next part, we will elaborate on how to effectively mitigate the trade-off via an
automated curriculum strategy.

5 Automated Curriculum Multi-Step Imitation Learning

The trade-off between the performance and the sample complexity makes it challenging to determine
an appropriate step lengthunder different scenarios. As shown in Section 4, we require much more
state-action training samples if we want to match longer OMs for better imitation results. There-
fore, multi-step OM matching can be hard at the beginning of the online training schedule when
the training samples are quite limited. A natural solution for the challenge is to expand the step
length as the agent collects more samples during interacting with the environment. Speci cally,
the step length should be selected as the one which provides the most informative momentum for
updating the policy, which motivates us to provide a syllabus of curriculum along with the training
procedure. Curriculum learning automatically designs and constrectgiaulumas a sequence of

improved. In our setting, correspondingly, the target task is imitation learning, and the curriculum
at each training iteration is the chosen stepf T-step OM matching. Instead of appropriate hand-
craft curriculum, we apply an elegant automated curriculum framework from [14] fstep OM
matching, which also provides ef cient and exible training for IL tasks.
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Speci cally, this formulation takes a curriculum containiNgtasks as an adversarfdl-armed ban-

and yields a reward; for that arm after each round. The goal is to maximize the sum of rewards
with an adaptive policy, and they employed a classic adversarial bandits algorithm named Exp3.S [3]
to handle the problem, where the optimal arm is only responsible for a portion of history. On round
t, the stochastic policy; for selecting an arnhis de ned by a set of incrementally multiplicative
weightw;

EXP3.S(; eril
)= Pg———t 19
o) g N (19)
h n 'o . X n oi
wei =log (1 )exp wy i+ K g4+ N 1 exp Wy 15 + K og ;
j6i
= TNlag=ig*

wherew;; =0, (=1 1, Fi R0) is the reward for selecting armand is the step size.
In practice, the received rewafdis adaptively rescaled to lie in the interjall; 1] as:

S 1 if f <qy°

= 1 if f > qpf (20)
At @) Giherwise
aqP '

whereqP® andq" are 20" and 8¢ percentiles of historical unscaled rewards up to tim®, =
frgq

Therefore, to learn an adaptive policy for selecting the curriculum, we need to devise a reward to
guide the policy to select the appropriate task. Ideally, we would like to choose a curriculum that
can maximize the optimization rate of the target objective, and thus the constructed reward should
re ect this optimization ratee.g, the decreased value of the loss function. Since the target objective
of method is represented by a certain distancd festep OM matching, a natural idea is to utilize the

JS divergence between tWoestep OMs Qg "k TE ) as the loss measure, which could be estimated

by the loss of the discriminator:

Diys( Tk T.) L (D)= E [log(Dy( "N+ E  [log(l Dg( ")I: (21)

Similar to GANs [12], the objective of the discriminatbD,,) can re ect the JS divergence of

the trajectories between the agent and then expert. Hence, we can take changing range of the loss
value before and after each training iteration to evaluate the optimization rate, and take improvement
margin as reward to guide the policy optimization. Formally, we abuse the symlslthe reward

for the curriculum selection policy &" training iteration:

re = Lx(Dy) L « 1(Dy); (22)
whereT is the task selected &t" iteration by the policyi.e, ®PS(k) = T.

It is worth noting that the chosen curriculum indeed re ects the learning progress. Intuitively, if
the reward for curriculunT is higher than the others, we would like to believe thastep OM

has the most signi cant discrepancy and should be optimized in priority. We nd it useful for
improving the sample ef ciency and alleviate the training instability and the gradient vanishing
problem, which is common in adversarial training [7]. In practice, we keep and train a limited
number ofT discriminators ag curriculums, and update the weight of each curriculum following
the rules of theexP3.s algorithm (Eq. (19)). These weights is used to construct the higher-level
policy E*P%S whose outputs are taken as a syllabus for different step lefgtienabling it to
automatically create stages of curriculum. To prevent the randomness during early training period,
we simply adopt an initialized curriculum instead of utilizing®3 until n training iterations. This
resulting algorithm is named automated curriculum GAIL (AutoGAIL). Details of the algorithm can
be found in Algo. 2.

6 Related Work

Perfect imitation of single-step behaviors corresponds to match the long-term trajectories of the ex-
pert. However, once there is a gap in the single-step, the discrepancy enlarges much more as the
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sequence becomes longer due to the error accumulation. This can be understood as the long-term
effect of the imitation learning (IL) tasks, which existed in most of the previous solutions. For exam-
ple, behaviour cloning (BC) methods [18, 4], adopts supervised training which leads to the notorious
compounding error problem [21, 20]. The recent popular generative adversarial methods GAIL [16],
bene ts from interacting with the environment with less compounding error [24]. However, GAIL
essentially matches a single-step occupancy measure (OM), instead of matching a sequence. In our
work, we further ease the long-term effect by proposing multi-step OM matching, along with an
automated curriculum framework for selecting appropriate step length for optimization.

Curriculum learning (CL) adopts a curriculum of progressive tasks to accelerate the neural network’s
training [9, 5], which has been widely used in complicated tasks [19, 13]. A typical CL solution

is using hand-crafted curriculum [25] by assuming the dif culty order of all the tasks, which is
usually hard to be quanti ed. As an improvement, Schmidhuber [22] proposes automatic curriculum
generation and utilizes program search to construct an asymptotically optimal algorithm for this
problem. Our automated strategy is built upon the work of Graves et al. [14], which proposes
automated curriculum learning by learning a policy to adaptively decide the task during the training,
based on the so-called learning progress [17] and multi-armed bandit algorithm [8]. In our setting,
we let the agent choose the appropriate step length as the best curriculum through the training time
on multi-step OM matching, so as to improve the sample ef ciency and the nal performance.

7 Experiments

We conduct several experiments to investigate the following research questions:

RQ1 Does multi-step occupancy measure matching have the potential for improvement?

RQ2 Does and how does the automated strategy of AutoGAIL enhance the performance?

RQ3 What are the key ingredients of AutoGAIL that contribute to the improvements?
To answer RQ1, we evaluate #-step GAIL and AutoGAIL on various continuous control tasks
with different numbers of trajectories. Regarding RQ2, we compare AutoGAIL with a random
curriculum selection strategy by showing the learning ef ciency with the corresponing curriculum
during the training procedure. Finally, we conduct ablation studies on two key hyperparameters (the
maximum step lengtfi and the explration ratio of the high-level policy) of AutoGAIL to address
RQ3. Due to the space limit, we leave experimental details and additional results in Appendix C.

Potential in multi-step. Quantitative experiments are conducted to investigate how multi-step GAIL
affects the performance when the step lenftharies. In particular, we tedt  4-step GAIL on
continuous control benchmarks: Hopper, Walker2d, HalfCheetah and Ant. For all environments,
we rst train an Soft Actor-Critic (SAC) [15] agent to collect expert demonstrations with varying
trajectory counts and then train the imitation agents with such data. All algorithms are trained with
exactly the same amount of environment interaction and evaluated by a deterministic policy. To
measure the imitation ef cacy over the sequence, we use the relative return accumulated over the
trajectories compared with expert. Fig. 2 depicts the results, which illustrates that there does exist a
trade-off between the rollout discrepancy and the sample complexity, according to the cho3en step
Speci cally, as is observed, with suf cient expert trajectories, 4-step GAIL can always achieve the
best performance than the other GAIL baselines (except AutoGAIL), but it has no advantage when
there are fewer trajectories. Besides, the optimal choice of the step Edgb varies with different
numbers of trajectories on different tasks. However, in most of times, a multi-step solution improves
the performance over 1-step GAIL, showing the potential for better sequence-level imitation.

Analysis for automated strategy.Notice that we have illustrated the superior performance of Au-
toGAIL among different numbers of demonstrations in Fig. 2, where we provide AutoGAIL with

4 (1 4 kinds of curriculum choice. Beni ting from the automated curriculum selection strategy
that balances the trade-off between the rollout discrepancy and the sample complexity, AutoGAIL
reaches the best performance on almost all tasks. The complete learning curves, shown in Ap-
pendix C.3, also provides strong evidence on its good learning ef ciency against above multi-step
GAIL baselines. Beyond the performance, we also analyze if the curriculum provides instructive
guidance through the training of the imitation agents. To this end, based on 4 expert trajectories, we
compare AutoGAIL with a random strategy algorithm (denotedRaadom Multi-step GAlLthat

selects the step length in a randomized way at each training iteration. As shown in Fig. 3, that
the high-level policy is well learned to provide reasonable choices on the selection of the curricu-
lum, which accomplishes the higher learning ef ciency against the random strategy in most of the
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Figure 2: Performance of differefit-step GAILS. The y-axis is average return over 5 random seeds, scaled so
that the expert achieves 1 and a random policy achieves 0.

Figure 3: Curriculum selection alongside the training on 4 expert demonstrations over 5 random seeds.

cases. To explain the rationality of the curriculum, let us rst conclude from Fig. 2: on Hopper,
Walker and Ant, 3-step GAIL and 4-step GAIL have the ability of reaching the better performances
than 1-step and 2-step methods; on the contrary, 2-step GAIL and 3-step GAIL are good enough on
HalfCheetah. As a result, AutoGAIL tends to choose a longer-step curriculum as the training goes
on Hopper, Walker and Ant, when the number of samples are no longer limited; on the other hand,
AutoGAIL does not even take a 4-step curriculum on HalfCheetah but stays at the 2-step curriculum
for a long time. To our surprise, on Walker, a randomized strategy can achieve a similar result as
good as AutoGAIL. This indicates the advantage of using a multi-step OM matching objective that
even a random step length (instead of 1-step always) is bene cial for imitation learning. Complete
training results on different numbers of demonstrations are available in Appendix C.3.

Ablation study. AutoGAIL has two important
hyperparameters, namely, the maximum step
lengthT and the exploration ratioof the high-
level policy ¥*3. To go deep into the algo-
rithm, we further perform a diverse set of anal-
yses on assessing the impact of these two hy-
perparameters under 4 expert trajectories. The
comparison results are plotted in Fig. 4 and the
detailed quantitive results is provided in Ap-
pendix C.3. A brief conclusion is that 1) a small valueTofimits the ability of AutoGAIL and
the performance can hardly improve whéns large enough for the task; and 2) the exploration
ratio slightly affects the nal performance of AutoGAIL and a greedy choice ) also keeps a
good result. Nevertheless, all the variants consistently outperform 1-step GAIL.

Figure 4: Ablation study.

8 Conclusion

In this paper we propose multi-step occupancy measure (OM) matching to alleviate the long-term
effect in imitation learning tasks. Based on the analysis of the trade-off between the sample com-
plexity and the rollout discrepancy, we nd it challenging to determine appropriate step length in
practice. Therefore, we further propose AutoGAIL that constructs automated curriculum learning
for multi-step OM matching by learning a high-level policy. AutoGAIL chooses the curriculum on
the current level of the agent and is able to provide a good result both on the learning ef ciency and
the nal performance.
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