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Abstract

Imitation learning (IL) aims to learn a policy from expert demonstrations with-
out reward signals. Previous methods such as behavior cloning (BC) work by
learning one-step predictions, but seriously suffer from the compounding error
problem; recent generative adversarial solution, though alleviates such problems
in a discrepancy minimization view, is still limited in only matching single-step
state-action distributions instead of long-term trajectories. To address the long-
range effect, in this paper, we explore the potential to boost the performance of
IL by regularizing the multi-step discrepancies. We first propose the multi-step
occupancy measure matching formulation, where we extend the idea of matching
single state-action pairs to sequences of multiple steps. Interestingly, theoretical
analysis of the proposed multi-step algorithm reveals a trade-off between the roll-
out discrepancy and the sampling complexity, making it non-trivial to select an
appropriate step length T for the practical implementation. Inspired by the recent
progress of integrating multi-armed bandits in curriculum learning, we further
propose an automated curriculum multi-step occupancy measure matching algo-
rithm named AutoGAIL, which automatically selects the appropriate step length
during the training procedure. Compared with various multi-step GAIL baselines,
AutoGAIL consistently achieves superior performance with satisfactory learning
efficiency given different amount of demonstrations.

1 Introduction

Imitation learning (IL) approaches solve the learning from demonstrations task, where the reward
is unknown and the agent can only get access to the expert’s demonstrations. Naive solutions,
such as behavior cloning (BC) Bain and Sammut [1995], simply treat it as a one-step supervised
learning problem. Another kind of solutions, inverse reinforcement learning (IRL) Abbeel and Ng
[2004], tries to first estimate the reward from the demonstrations and then train an online RL agent
to induce the optimal policy. Recently, inspired by the progress of generative models, Ho and Ermon
[2016] proposes generative adversarial imitation learning (GAIL), which views IL as a discrepancy
minimization problem and imitated the expert policy by an occupancy measure (OM) matching
procedure.

Perfect imitation corresponds to match the long-term rollout sequence of the expert. Unfortunately,
algorithms mentioned above, though practically effective for a range of IL tasks, remain problematic
on long-term imitation. The classic BC method heavily relies on the i.i.d assumption of each single
step to learn the one-step predictions, which omits the long-term sequence matching. Thanks to the
online training scheme, IRL and GAIL methods are capable of alleviating the long-term sequence
matching problem by learning the policy from the estimated reward function or the discriminator.
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However, they are essentially limited in matching the single-step OM, which obstructs the policy
to learn to match the long-term trajectory distribution. Though theoretically matching the 1-step
OMs is able to match the long-term sequence, in practice this optimal matching cannot be always
achieved, where the small 1-step mistakes will eventually lead to an unacceptable large error from
the long-step view.

In this paper, to explicitly mitigate such long-term problems in IL, we extend the definition of the
state or state-action occupancy from simple single-step to pieces of sequences, and introduce the
idea of T -step OM. T -step OM is defined as the distribution of multi-step sequences of states and
actions. This concept enables us to derive a novel algorithm where we can alleviate the long-term
effect by directly conducting multi-step OM matching (i.e., match the sequence-level OM instead
of the step-level OM), named multi-step GAIL (MS-GAIL). Intuitively, compared with the one-step
OM discrepancy, the divergence of a multi-step OM can be much more informative and lead to better
optimization of the gap between the agent and the expert. Starting from the intuitive idea, we further
conduct a theoretical analysis of both rollout discrepancy and sample complexity, and demonstrate
that the MS-GAIL algorithm always holds a tighter bound on single-step occupancy discrepancy.
Interestingly, the theoretical results also reveal a trade-off between the rollout discrepancy and the
sample complexity, i.e., we can further alleviate the long-term effect by minimizing a longer-step
OM, but there is no free lunch and we have to pay much more training samples for that. Therefore,
it is challenging to determine the best multi-step length given the fixed size of training samples.
Inspired by the recent progress of combining multi-armed bandits with curriculum learning, we fur-
ther propose an automated curriculum measure matching algorithm named AutoGAIL. AutoGAIL
provides a flexible framework for multi-step OM matching, which can automatically select the ap-
propriate sequence length to improve the sample efficiency as well as the final performance.

In a nutshell, the contributions of this paper can be summarized as follows:
1. We introduce the idea of T -step OM and propose the practical multi-step OM matching algo-

rithm, i.e., MS-GAIL (Section 3).
2. We analyze the rollout discrepancy and the sample complexity of MS-GAIL, and reveal a non-

trivial trade-off between them (Section 4).
3. We further propose an auto-curriculum framework of T -step OM matching algorithm that can

automatically choose the sequence length to improve the final performance (Section 5).
Finally, we evaluate MS-GAIL and AutoGAIL with various step length on several continuous con-
trol benchmarks. Comprehensive experiments verify the trade-off between the rollout discrepancy
and the sample complexity, and demonstrate the potential for improving the imitation performance
via multi-step OM matching. Results also show that AutoGAIL successfully handles the challenge
on determine the appropriate multi-step length and can always achieve the best performance as well
as the sample efficiency.

2 Preliminaries

Notation. A Markov Decision Process (MDP) is defined by a tuple M = ⟨S,A,M, ρ0, r, γ⟩, where
S is the set of states, A is the action space of the agent, M : S ×A×S → [0, 1] is the environment
dynamics, ρ0 : S → [0, 1] is the distribution of the initial state s0, and γ ∈ [0, 1] is the discounted
factor. The agent holds the policy π(a|s) : S × A → [0, 1] to make decisions and receive rewards
defined as r : S × A → R. The objective is to find the optimal policy that maximize the expected
sum of the discounted rewards with the entropy at each visited state:

π∗ = argmax
π

Eπ [r(s, a)] + αH(π) , (1)

where H(π) ≜ Eπ[− log π(a|s)] is the γ-discounted casual entropy Bloem and Bambos [2014] and
α is the temperature hyperparameter to determine the relative importance of the entropy term. In
this work we use the subscript to denote the timestep, e.g., st and the superscript is the order in a
sequence, e.g., at.

Many recent IL methods are built upon the concept of Occupancy Measure (OM), which is also the
foundation of our approach. Formally, OM is defined as the discounted occurrence probability of
states or state-action pairs when the agent interacts with the environment using policy π:

ρπ(s, a) =

∞∑
t=0

γtP (st = s, at = a|π) = π(a|s)
∞∑
t=0

γtP (st = s|π) = π(a|s)ρπ(s). (2)
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Note that ρ is unormalized and the normalization can be easily achieved by dπ = (1 − γ)ρπ . With
such a definition we can write down that Eπ[·] =

∑
s,a ρπ(s, a)[·] = E(s,a)∼ρπ [·].

Imitation Learning as 1-step Occupancy Measure Matching. Here we briefly review the con-
clusions from Ho and Ermon [2016] and Ghasemipour et al. [2019], which analyzed the connection
between the IL problem and the 1-step OM matching problem. These conclusions help us to con-
struct a theoretical analysis of our proposed method.
Proposition 1 (Proposition 3.2 of Ho and Ermon [2016]). Given the definition of RL procedure as
Eq. (1) and IRL procedure as IRLψ(πE) = argmaxr −ψ(r) + (minπ∈Π −H(π)− Eπ[r(s, a)]) +
EπE

[r(s, a)], we have:

RL ◦ IRLψ(πE) = argmin
π

−H(π) + ψ∗(ρπ − ρπE
) (3)

This proposition indicates that RL with the reward recovered by a ψ-regularized IRL can actually
learn a policy whose 1-step OM matches the expert’s measured by the convex function ψ∗, i.e.,
optimizing certain distance metrics of OM between the policy and expert can solve the IL problem.
Proposition 2 (Appendix D of Ghasemipour et al. [2019]). Considering the reward function regu-
larizer as: ψf (r) = EρπE

(s,a) [f
∗(s, a) + r(s, a)] where f∗ is the convex conjugate of f , then we

have:

ψ∗
f (ρπ(s, a)− ρπE

(s, a)) = Df(ρπ(s, a)∥ρπE
(s, a)) (4)

RL ◦ IRLψ(πE) = argmin
π

−H(π) + Df(ρπ(s, a)∥ρπE
(s, a)) (5)

This proposition illustrates that any f-divergence can be used for IL as long as we choose a specific
ψf . For example, GAIL Ho and Ermon [2016] minimizes the JS divergence DJS (ρπ∥ρπE

)) while
AIRL Fu et al. [2017] minimizes the KL divergence DKL(ρπ∥ρπE

).

3 Imitation Learning as T -step Occupancy Measure Matching

In this section, we first analyze the limitations of single-step discrepancy by two illustrative exam-
ples. Then we propose the definition of T -step OM, and further extend the previous 1-step OM
matching to T -step OM matching to overcome the shortages of previous methods.

3.1 Limitations of 1-Step Discrepancy

Ambiguity for determining a better policy in a single-step view. The first example is constructed
on a simple ring MDP example to show the ambiguity for determining the optimality in a one-
step view (Fig. 1(a)). As shown in the table, two behavior policies π1 and π2 differ with the
expert policy πE only on a single state, resulting in the same KL divergence of the 1-step OM
DKL(Pi(s, a)∥PE(s, a)). However, the optimality can be determined in a multi-step view as we
should match the long-term sequence. For example, π1 keeps a smaller 2-step divergence (i.e. ,
DKL(Pi(s

1, a1, s2, a2)∥PE(s1, a1, s2, a2))) and is better than π2. As the step gets longer, the opti-
mality is more significant.

Weak capacity for measuring single-step discrepancies. This example is constructed on a simple
one-dimensional environment, aiming to describe how one-step error spreads to long-step. Specif-
ically, the agent moves along the x-axis from the point 0.5 to the point 10 within an action space
[0,1] (shown in Fig. 1(b)). The expert policy is a rectangular window function (blue), and the
sub-optimal policies are Blackman window functions with different parameters (orange, red and
green). With respect to the expert policy, the sub-optimal policies get worse as the index in-
creases. We analyze the KL divergence ratio DKL(Pi(s,a)∥PE(s,a))

DKL(P1(s,a)∥PE(s,a)) , DKL(Pi(s
1,a1,s2,a2)∥PE(s1,a1,s2,a2))

DKL(P1(s1,a1,s2,a2)∥PE(s1,a1,s2,a2))

and DKL(Pi(s
1,a1,··· ,s3,a3)∥PE(s1,a1,··· ,s3,a3))

DKL(P1(s1,a1,··· ,s3,a3)∥PE(s1,a1,··· ,s3,a3)) for different sub-optimal index i on 1-step, 2-step and
3-step state-action sequence distribution. Apparently, even if the sub-optimalilties for different poli-
cies seems similar in a single-step view (the 1-step bars shown in Fig. 1(b) right), the discrepancy
can deteriorate much more as the step gets longer (the 2 and 3-step bars shown in Fig. 1(b) right).

3The OM shown here is unnormalized, while we use the normalized ones to calculate the divergence.
4k-s denotes k-step for short.
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𝝆𝝅𝑬 𝒂𝟏 𝒂𝟐
𝒔𝟏 0.2 0.8
𝒔𝟐 0.5 0.5
𝒔𝟑 0.4 0.6
𝒔𝟒 0.2 0.8
𝝆𝝅𝟏 𝒂𝟏 𝒂𝟐
𝒔𝟏 0.3 0.7
𝒔𝟐 0.5 0.5
𝒔𝟑 0.4 0.6
𝒔𝟒 0.2 0.8

𝝆𝝅𝟐 𝒂𝟏 𝒂𝟐
𝒔𝟏 0.2 0.8
𝒔𝟐 0.5 0.5
𝒔𝟑 0.4 0.6
𝒔𝟒 0.3 0.7

KL 𝝅𝟏 𝝅𝟐
1-s 0.7 0.7
2-s 1.1 1.5
3-s 1.7 2.3
4-s 2.2 3.1

e-2

(a) Ring MDP example. Left: environment transi-
tions. Right: 1-step OM for different policies3and the
KL divergence in different step views4.
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Figure 1: Illustrative examples.

3.2 From 1-step to T -step

To mitigate the limitation of the single-step discrepancy and solve the long-term effect, we explore
the potential of directly regularizing the multi-step discrepancy. We start with the definition of the
T -step OM:
Definition 1 (T -step Occupancy Measure). The T -step OM is defined as the discounted occurrence
probability of a T -step trajectory τT = {s0, a0, s1, a1, · · · , sT−1, aT−1} that begins with s0, a0:

ρTπ (τ
T ) =

∞∑
t=0

γtP (st = s0, at = a0, · · · , st+T−1 = sT−1, at+T−1 = aT−1|π) . (6)

For simplicity, we will use the notation ρ to denote the 1-step OM ρ1 in the following paper. An
easy conclusion is that starting from the same state-action pair s0, a0, its corresponding T -step OM
ρTπ and H-step OM ρHπ (H ≤ T ) are connected by the policy π and the dynamics M as:

ρTπ (τ
T ) = ρHπ (τH)

T−1∏
t=H

π(at|st)M(st|st−1, at−1) . (7)

In particular, when H = 1, we have:

ρTπ (τ
T ) = ρπ(s

0, a0)

T−1∏
t=1

π(at|st)M(st|st−1, at−1) (8)

By definition, we extend the expectation w.r.t. the policy π as the expectation under the T -step OM:
Eπ[·] ≜

∑
τT ρTπ (τ

T )[·] = EτT∼ρTπ [·]. Therefore the RL objective can be written in a T -step form:

π∗ = argmax
π

EρTπ
[
r(τT )

]
+ αH(π) , (9)

where r(τT ) ≜ r(s0, a0).

Now we are ready to extend 1-step conclusions to T -step OM matching. Specifically, we first show
the one-one mapping between the policy set Π and the set of τT -step OMs D(T ) ≜ {ρTπ : π ∈ Π},
which enables us to construct the policy with the T -step OM:
Lemma 1 (Theorem 2 of Syed et al. [2008], Lemma 3.1 of Ho and Ermon [2016]). If ρ ∈ D(1),
then ρ is the OM for πρ ≜ ρ(s, a)/

∑
a′ ρ(s, a

′), and πρ is the only policy whose OM is ρ.

For T > 1, we are able to induce ρ from ρT according to Eq. (7):
Lemma 2. If ρT ∈ D(T ), then ρ ∈ D(1) is the unique 1-step OM corresponding to ρT .

Given Lemma 1 and Lemma 2, now we draw the following conclusions:

Theorem 1 (Extension of Lemma 1). If ρT ∈ D(T ), then ρT is the T -step OM for πρT ≜
ρ(s0, a0)/

∑
a′ ρ(s

0, a′) where ρ is the corresponding 1-step OM found by Lemma 2, and πρT is
the only policy whose T -step OM is ρT .
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Theorem 1 indicates that we can recover the policy if we can match a T -step OM. Thence, similar
properties of 1-step OM (Proposition 1 and Proposition 2) still hold for T -step OM:
Proposition 3 (Extension of Proposition 1). Given the definition of RL procedure as Eq. (9) IRL
procedure as: IRLψ(πE) = argmaxr −ψ(r) +

(
minπ∈Π −H(π)− EρTπ [r(τ

T )]
)
+ EρTπE

[r(τT )],
we have

RL ◦ IRLψ(πE) = argmin
π

−H(π) + ψ∗(ρTπ − ρTπE
) (10)

Proposition 4 (Extension of Proposition 2). Consider the reward function regularizer as: ψf (r) =
EρτT

πE
(s,a)

[
f∗(τT ) + r(τT )

]
, where f∗ is the convex conjugate of f , then we have

ψ∗
f (ρ

T
π − ρTπE

) = Df(ρ
T
π (τ

T )∥ρTπE
(τT )) (11)

RL ◦ IRLψ(πE) = argmin
π

−H(π) + Df(ρ
T
π ∥ρTπE

) (12)

These extended conclusions suggest that it is theoretically sound to generalize previous IL solutions
from 1-step OM matching to T -step OM matching, by replacing the state-action pair (s, a) as the
T -step trajectory τT .

Practical T -step Imitation Learning. In this part we provide an practical algorithm for optimizing
the proposed T -step OM matching objective. Motivated by Ho and Ermon [2016], we can simply
derive an adversarial algorithm by choosing a specific regularizer ψ, which actually minimizes the
JS divergence DJS(ρ

T
π ∥ρTπE

) between the T -step OM of the agent and the expert. In this way, the
algorithm alternately updates the discriminator Dw and the policy πθ following the gradients:

∇wLD = Êτi [∇w log(DT
w(τ

T ))] + ÊτT
E
[∇w log(1−DT

w(τ
T ))] (13)

∇θLπ = ÊρT
[
∇θ log πθ(a|s)QT (s, a)

]
, (14)

where QT (s, a) = Êπ[r̂T (st, at) | s0 = s, a0 = a]. Note that, instead of operating on single-step
state-action pairs, the discriminator now classifies whether a T -step sequence τT is drawn from the
expert distribution. And the reward function can be constructed using the discriminator as:

r̂T (s, a) ≜ r̂T (τT |st = s, at = a) = logD(τT ) (15)
This learning procedure actually can be viewed as a T -step generalization of GAIL Ho and Ermon
[2016], which we call multi-step GAIL (MS-GAIL). A detailed description of the algorithm can be
found in Algo. 1.

4 Theoretical Analysis

While the proposed multi-step OM matching is conceptually simple, it is still important to investi-
gate the underlying properties of the algorithm. In this section, we analyze rollout discrepancy and
sample complexity of the proposed MS-GAIL.

4.1 Discrepancy Analysis on Rollout Sequences

We first study whether matching multi-step OMs results a better solution in a shorter-step view,
through analyzing the discrepancy on rollout sequences. Let us rollout the policy π from s0t at
timestep t for H step. Our desired goal is to match a long-term rollout sequence τH of the expert.
Then the discrepancy of the H-step OM between the agent and the expert can be given by the
following theorem.
Theorem 2 (Rollout Discrepancy of Multi-Step OM Matching). If the Kullback–Leibler divergence
of two T -step normalized OM is smaller than a certain error ϵπ , i.e., DKL

(
ρT1 (τ

T )∥ρT2 (τT )
)
≤ ϵπ ,

then we have that the discrepancy of the H-step normalized OM (H ≤ T ) is bounded by

DTV
(
ρH1 (s, a)∥ρH2 (s, a)

)
≤

√
2ϵπ(T −H + 1) . (16)

The proof is shown in Appendix B.1. Theorem 2 indicates that matching a long step discrepancy
significantly contributes to matching a shorter sequence. Specifically, with the same error, minimiz-
ing a multi-step OM benefits much more than directly matching the single-step OM. This verifies
our observation in the motivating example shown in Fig. 1(a), which suggests that utilizing the
multi-step OM matching can benefit the IL tasks.
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4.2 Sample Complexity Analysis on Different Length

In this section we concentrate on the sample complexity of our proposed algorithm. Based on
the generalization theory in GAN Arora et al. [2017], Zhang et al. [2017] and previous sample
complexity analysis in IL Xu et al. [2019], we first introduce the definition of the generalization of
multi-step OM matching:

Definition 2 (Generalization of Occupancy Measure Matching). Given T -step OM ˆρTπE
, an empiri-

cal distribution of ρTπE
withmT samples obtained by πE , and a T -step OM ρTπ generalizes under the

distance between two distributions d(·, ·) with error ϵ if the following holds with high probability:

|d(ρTπ , ρTπE
)− d(ρ̂Tπ , ρ̂

T
πE

)| ≤ ϵ , (17)

where ρ̂Tπ and ρ̂TπE
are the empirical distributions of mT sequence-level samples from ρπ and ρπE

respectively.

With the above definition, now we start to analyze the sample complexity of the proposed MS-GAIL,
which trains the policy and the discriminator within the generative adversarial framework. We first
present the sample complexity theorem here:
Theorem 3 (Lemma 6.3 of Xu et al. [2019]). Assume that the policy π optimizes GAIL objective
up to an ϵ error and all discriminator nets D in the discriminator set C are bounded by ∆, i.e.,
∥D∥∞ ≤ ∆, ∀D ∈ C. Let R̂

ρ
(m)
πE

(C) denote the empirical Rademacher complexity of C. Then with
probability at least 1− δ, the following inequality holds:

DTV(ρ
T
π ∥ρTπE

) ≤
√

2ΛF,Π

(
inf
π∈Π

√
∆DTV(ρTπ ∥ρTπE

)+
√
ϵ+2

√
R̂(m1/T )
ρπE

(C)+2∆

√
2T log(1/δ)

m1

)
,

(18)

where ΛC,Π = sup
π∈Π

∥ log( ρ
T
π

ρTπE

)∥C,1 < ∞ and m1 is the number of state-action pairs. The proof

of Theorem 3 can be found in Xu et al. [2019], where the only difference is the sample number.
Since we are matching the T -step OM, the acquired samples have to be T -step sequences such that
m1 = TmT . Therefore, to get the same bound, for a larger step length T , it will need much more
training samples proportional to the number of samples in 1-step OM matching.

Summary. Combining the conclusions from Theorem 2 and Theorem 3, we derive a trade-off
between the performance and the sample complexity. Particularly, given the same capacity on the
error of the optimization, we would like to match a multi-step OM (with a step length T as long
as it can be) to get a better final performance; unfortunately, to converge to such an optimal policy,
a T -step OM matching objective requires T times number of samples compared with a 1-step OM
matching algorithm. Thus, to achieve a better result, we need to carefully choose the appropriate
step length T . In the next part, we will elaborate on how to effectively mitigate the trade-off via an
automated curriculum strategy.

5 Automated Curriculum Multi-Step Imitation Learning

The trade-off between the performance and the sample complexity makes it challenging to determine
an appropriate step length T under different scenarios. As shown in Section 4, we require much
more state-action training samples if we want to match longer OMs for better imitation results.
Therefore, multi-step OM matching can be hard at the beginning of the online training schedule
when the training samples are quite limited. A natural solution for the challenge is to expand the
step length as the agent collects more samples during interacting with the environment. Specifically,
the step length should be selected as the one which provides the most informative momentum for
updating the policy, which motivates us to provide a syllabus of curriculum along with the training
procedure. Curriculum learning automatically designs and constructs a curriculum as a sequence of
tasks K1, . . . ,KN to be learned, so that the efficiency or performance on the target task Kt can be
improved. In our setting, correspondingly, the target task is imitation learning, and the curriculum at
each training iteration is the chosen step T of T -step OM matching. Instead of appropriate handcraft
curriculum, we apply an elegant automated curriculum framework from Graves et al. [2017] for T -
step OM matching, which also provides efficient and flexible training for IL tasks.
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Specifically, this formulation takes a curriculum containing N tasks as an adversarial N -armed
bandit Bubeck and Cesa-Bianchi [2012], where an agent selects a sequence of arms a1 . . . aT over
T rounds of play (at ∈ {1, . . . , N}) and yields a reward rt for that arm after each round. The goal
is to maximize the sum of rewards with an adaptive policy, and they employed a classic adversarial
bandits algorithm named Exp3.S Auer et al. [2002] to handle the problem, where the optimal arm is
only responsible for a portion of history. On round t, the stochastic policy πt for selecting an arm i
is defined by a set of incrementally multiplicative weight wt,i:

πEXP3.S
t (i) =

ewt,i∑N
j=1 e

wt,j

+
ϵ

N
(19)

wt,i = log
[
(1− αt) exp

{
wt−1,i+ηr̃

β
t−1,i

}
+

αt
N − 1

∑
j ̸=i

exp
{
wt−1,j + ηr̃βt−1,j

}]
,

where w1,i = 0, αt = t−1, r̃βt,i =
rtI[as=i]+β

πs(i)
is the reward for selecting arm i, and η is the step size.

In practice, the received reward r̂t is adaptively rescaled to lie in the interval [−1, 1] as:

rt =


−1 if r̂t < qlo

t

1 if r̂t > qhi
t

2(r̂t−qlo
t )

qhi
t −qlo

t
− 1 otherwise ,

(20)

where qlo
t and qhi

t are 20th and 80th percentiles of historical unscaled rewards up to time t: Rt =
{r̂i}t−1

i=1 .

Therefore, to learn an adaptive policy for selecting the curriculum, we need to devise a reward to
guide the policy to select the appropriate task. Ideally, we would like to choose a curriculum that
can maximize the optimization rate of the target objective, and thus the constructed reward should
reflect this optimization rate, e.g., the decreased value of the loss function. Since the target objective
of method is represented by a certain distance for T -step OM matching, a natural idea is to utilize the
JS divergence between two T -step OMs DJS(ρ

T
π ∥ρTπE

) as the loss measure, which could be estimated
by the loss of the discriminator:

−DJS(ρ
T
π ∥ρTπE

) ≈ L(DT
w) = Êτi [log(DT

w(τ
T ))] + ÊτE [log(1−DT

w(τ
T ))] . (21)

Similar to GANs Goodfellow et al. [2014], the objective of the discriminator L(Dw) can reflect the
JS divergence of the trajectories between the agent and then expert. Hence, we can take changing
range of the loss value before and after each training iteration to evaluate the optimization rate, and
take improvement margin as reward to guide the policy optimization. Formally, we abuse the symbol
rk as the reward for the curriculum selection policy at kth training iteration:

rk = Lk(DT
w)− Lk−1(D

T
w) , (22)

where T is the task selected at kth iteration by the policy, i.e., πEXP3.S(k) = T .

It is worth noting that the chosen curriculum indeed reflects the learning progress. Intuitively, if the
reward for curriculum T is higher than the others, we would like to believe that T -step OM has the
most significant discrepancy and should be optimized in priority. We find it useful for improving the
sample efficiency and alleviate the training instability and the gradient vanishing problem, which is
common in adversarial training Brock et al. [2018]. In practice, we keep and train a limited number
of T discriminators as T curriculums, and update the weight of each curriculum following the rules
of the EXP3.S algorithm (Eq. (19)). These weights is used to construct the higher-level policy πEXP3.S

whose outputs are taken as a syllabus for different step lengths T , enabling it to automatically create
stages of curriculum. To prevent the randomness during early training period, we simply adopt an
initialized curriculum instead of utilizing πEXP3.S until n training iterations. This resulting algorithm
is named automated curriculum GAIL (AutoGAIL). Details of the algorithm can be found in Algo. 2.

6 Related Work

Perfect imitation of single-step behaviors corresponds to match the long-term trajectories of the
expert. However, once there is a gap in the single-step, the discrepancy enlarges much more as
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the sequence becomes longer due to the error accumulation. This can be understood as the long-
term effect of the imitation learning (IL) tasks, which existed in most of the previous solutions.
For example, behaviour cloning (BC) methods Pomerleau [1991], Bain and Sammut [1995], adopts
supervised training which leads to the notorious compounding error problem Ross et al. [2011],
Ross and Bagnell [2010]. The recent popular generative adversarial methods GAIL Ho and Ermon
[2016], benefits from interacting with the environment with less compounding error Xu et al. [2019].
However, GAIL essentially matches a single-step occupancy measure (OM), instead of matching a
sequence. In our work, we further ease the long-term effect by proposing multi-step OM matching,
along with an automated curriculum framework for selecting appropriate step length for optimiza-
tion.

Curriculum learning (CL) adopts a curriculum of progressive tasks to accelerate the neural net-
work’s training Elman [1993], Bengio et al. [2009], which has been widely used in complicated
tasks Reed and De Freitas [2015], Graves et al. [2016]. A typical CL solution is using hand-crafted
curriculum Zaremba and Sutskever [2014] by assuming the difficulty order of all the tasks, which
is usually hard to be quantified. As an improvement, Schmidhuber [2004] proposes automatic cur-
riculum generation and utilizes program search to construct an asymptotically optimal algorithm
for this problem. Our automated strategy is built upon the work of Graves et al. [2017], which
proposes automated curriculum learning by learning a policy to adaptively decide the task during
the training, based on the so-called learning progress Oudeyer et al. [2007] and multi-armed bandit
algorithm Bubeck and Cesa-Bianchi [2012]. In our setting, we let the agent choose the appropriate
step length as the best curriculum through the training time on multi-step OM matching, so as to
improve the sample efficiency and the final performance.

7 Experiments

We conduct several experiments to investigate the following research questions:
RQ1 Does multi-step occupancy measure matching have the potential for improvement?
RQ2 Does and how does the automated strategy of AutoGAIL enhance the performance?
RQ3 What are the key ingredients of AutoGAIL that contribute to the improvements?

To answer RQ1, we evaluate 1∼4-step GAIL and AutoGAIL on various continuous control tasks
with different numbers of trajectories. Regarding RQ2, we compare AutoGAIL with a random
curriculum selection strategy by showing the learning efficiency with the corresponing curriculum
during the training procedure. Finally, we conduct ablation studies on two key hyperparameters (the
maximum step length T and the explration ratio ϵ of the high-level policy) of AutoGAIL to address
RQ3. Due to the space limit, we leave experimental details and additional results in Appendix C.

Potential in multi-step. Quantitative experiments are conducted to investigate how multi-step GAIL
affects the performance when the step length T varies. In particular, we test 1 ∼ 4-step GAIL on
continuous control benchmarks: Hopper, Walker2d, HalfCheetah and Ant. For all environments, we
first train an Soft Actor-Critic (SAC) Haarnoja et al. [2018] agent to collect expert demonstrations
with varying trajectory counts and then train the imitation agents with such data. All algorithms are
trained with exactly the same amount of environment interaction and evaluated by a deterministic
policy. To measure the imitation efficacy over the sequence, we use the relative return accumulated
over the trajectories compared with expert. Fig. 2 depicts the results, which illustrates that there
does exist a trade-off between the rollout discrepancy and the sample complexity, according to the
chosen step T . Specifically, as is observed, with sufficient expert trajectories, 4-step GAIL can
always achieve the best performance than the other GAIL baselines (except AutoGAIL), but it has
no advantage when there are fewer trajectories. Besides, the optimal choice of the step length T
also varies with different numbers of trajectories on different tasks. However, in most of times, a
multi-step solution improves the performance over 1-step GAIL, showing the potential for better
sequence-level imitation.

Analysis for automated strategy. Notice that we have illustrated the superior performance of Au-
toGAIL among different numbers of demonstrations in Fig. 2, where we provide AutoGAIL with
4 (1 ∼ 4) kinds of curriculum choice. Benifiting from the automated curriculum selection strategy
that balances the trade-off between the rollout discrepancy and the sample complexity, AutoGAIL
reaches the best performance on almost all tasks. The complete learning curves, shown in Ap-
pendix C.3, also provides strong evidence on its good learning efficiency against above multi-step
GAIL baselines. Beyond the performance, we also analyze if the curriculum provides instructive
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Figure 2: Performance of different T -step GAILs. The y-axis is average return over 5 random seeds, scaled so
that the expert achieves 1 and a random policy achieves 0.
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Figure 3: Curriculum selection alongside the training on 4 expert demonstrations over 5 random seeds.

guidance through the training of the imitation agents. To this end, based on 4 expert trajectories, we
compare AutoGAIL with a random strategy algorithm (denoted as Random Multi-step GAIL) that
selects the step length T in a randomized way at each training iteration. As shown in Fig. 3, that
the high-level policy is well learned to provide reasonable choices on the selection of the curricu-
lum, which accomplishes the higher learning efficiency against the random strategy in most of the
cases. To explain the rationality of the curriculum, let us first conclude from Fig. 2: on Hopper,
Walker and Ant, 3-step GAIL and 4-step GAIL have the ability of reaching the better performances
than 1-step and 2-step methods; on the contrary, 2-step GAIL and 3-step GAIL are good enough on
HalfCheetah. As a result, AutoGAIL tends to choose a longer-step curriculum as the training goes
on Hopper, Walker and Ant, when the number of samples are no longer limited; on the other hand,
AutoGAIL does not even take a 4-step curriculum on HalfCheetah but stays at the 2-step curriculum
for a long time. To our surprise, on Walker, a randomized strategy can achieve a similar result as
good as AutoGAIL. This indicates the advantage of using a multi-step OM matching objective that
even a random step length (instead of 1-step always) is beneficial for imitation learning. Complete
training results on different numbers of demonstrations are available in Appendix C.3.
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Figure 4: Ablation study.

Ablation study. AutoGAIL has two important
hyperparameters, namely, the maximum step
length T and the exploration ratio ϵ of the high-
level policy πEXP3. To go deep into the algo-
rithm, we further perform a diverse set of anal-
yses on assessing the impact of these two hy-
perparameters under 4 expert trajectories. The
comparison results are plotted in Fig. 4 and the
detailed quantitive results is provided in Ap-
pendix C.3. A brief conclusion is that 1) a small value of T limits the ability of AutoGAIL and
the performance can hardly improve when T is large enough for the task; and 2) the exploration
ratio slightly affects the final performance of AutoGAIL and a greedy choice (ϵ = 0) also keeps a
good result. Nevertheless, all the variants consistently outperform 1-step GAIL.

8 Conclusion

In this paper we propose multi-step occupancy measure (OM) matching to alleviate the long-term
effect in imitation learning tasks. Based on the analysis of the trade-off between the sample com-
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plexity and the rollout discrepancy, we find it challenging to determine appropriate step length in
practice. Therefore, we further propose AutoGAIL that constructs automated curriculum learning
for multi-step OM matching by learning a high-level policy. AutoGAIL chooses the curriculum on
the current level of the agent and is able to provide a good result both on the learning efficiency and
the final performance.
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Appendices
A Algorithm

Algorithm 1 Multi-Step Generative Adversarial Imitation Learning (MS-GAIL)

1: Input: Sequence length T , expert demonstration data τE = {(si, ai)}Ni=1, parameterized dis-
criminator DT

w , parameterized policy πθ.
2: for k = 0, 1, 2, . . . do
3: Sample T -step length sequence τT ∼ πθ.
4: Optimize w with the gradient:

Êτi [∇w log(DT
w(τ

T ))] + ÊτT
E
[∇w log(1−DT

w(τ
T ))] .

5: Update θ with the gradient:

ÊρT
[
∇θ log πθ(a|s)QT (s, a)

]
.

where QT (s, a) = Êπ[r̂T (st, at) | s0 = s, a0 = a], and

r̂T (s, a) = r̂T (τT |st = s, at = a) = logD(τT ) .

6: end for
7: return π

Algorithm 2 Automated Curriculum Generative Adversarial Imitation Learning (AutoGAIL)

1: Input: Maximum sequence length T , expert demonstration data τE = {(si, ai)}Ni=1, parameter-
ized discriminatorDT

w , parameterized policy πθ, initial curriculum id i0, least selection iteration
n.

2: for k = 0, 1, 2, . . . do
3: for t = 0, · · · , T do
4: Sample t-step length sequence τ t ∼ πθ.
5: Optimize w with the gradient:

Êτi [∇w log(Dt
w(τ

t))] + Êτt
E
[∇w log(1−Dt

w(τ
t))] .

6: Compute the loss and construct the reward of EXP3.S rEXP3.S
k = Lt(Dt) following Eq. (22).

7: Rescale the reward follows Eq. (22).
8: Update the high-level policy πEXP3.S(t) using the rescaled reward following Eq. (19).
9: if k < n then

10: Set the current curriculum id i = i0.
11: else
12: Set the current curriculum id i = πEXP3.S(k).
13: end if
14: end for
15: Update θ with the gradient w.r.t the current curriculum i:

ÊρT
[
∇θ log πθ(a|s)Qi(s, a)

]
.

where Qi(s, a) = Êπ[r̂i(st, at) | s0 = s, a0 = a], and

r̂i(s, a) = r̂i(τ i|st = s, at = a) = logD(τ i) .

16: end for
17: return π
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B Proofs

We introduce useful lemmas before providing our proof.
Lemma 3 (Relation between the Kullback–Leibler divergence and the total variation distance).
Given two distributions p1(x) and p2(x), the relationship between their Kullback–Leibler diver-
gence and total variation distance is:

DTV(p1(x)∥p2(x)) =
(
1

2
DKL(p1(x)∥p2(x)))

) 1
2

Lemma 4 (Total variation distance of joint distributions). Given two joint distributions p1(x, y) =
p1(y|x)p1(x) and p2(x, y) = p2(y|x)p2(x), then the total variation distance has the following
bound:

Ex∼p1(x) [DTV(p1(y|x)∥p2(y|x))] ≤ DTV(p1(x, y)∥p2(x, y)) + DTV(p1(x)∥p2(x))

Proof.

Ex∼p1 [DTV(p1(y|x)∥p2(y|x))] =
1

2

∑
x,y

p1(x) |p1(y|x)− p2(y|x)|

=
1

2

∑
x,y

|p1(x)p1(y|x)− p1(x)p2(y|x)|

=
1

2

∑
x,y

|p1(x)p1(y|x)− p1(x)p2(y|x) + p2(x)p2(y|x)− p2(x)p2(y|x)|

=
1

2

∑
x,y

|p1(x, y)− p2(x, y) + (p2(x)− p1(x))p2(y|x)|

≤ 1

2

∑
x,y

|p1(x, y)− p2(x, y)]|+
1

2

∑
x

|p2(x)− p1(x)|

= DTV(p1(x, y)∥p2(x, y)) + DTV(p1(x)∥p2(x))

Lemma 5. Given two joint distributions p1(x, y) = p1(y|x)p1(x) and p2(x, y) = p2(y|x)p2(x),
then the total variation distance has the following bound:

DTV(p1(x)∥p2(x)) ≤ DTV(p1(x, y)∥p2(x, y))

Proof.

DTV(p1(x)∥p2(x)) =
1

2

∑
x

|p1(x)− p2(x)|

=
1

2

∑
x

∣∣∣∣∣∑
y

p1(x, y)− p2(x, y)

∣∣∣∣∣
≤ 1

2

∑
x,y

|p1(x, y)− p2(x, y)|

= DTV(p1(x, y)∥p2(x, y))

B.1 Proof of Theorem 2

To give a proof of Theorem 2, we start with the policy discrepancy bound if we bound the discrep-
ancy of a 1-step OM.
Lemma 6. Assume the Kullback–Leibler divergence of two 1-step normalized OM is bounded by
DKL (ρ1(s, a)∥ρ2(s, a)) ≤ ϵπ , then we have that the policy discrepancy is bounded by

Es∼π1
[DTV(π1(a|s)∥π2(a|s))] ≤ (2ϵπ)

1
2 (23)
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Proof. Follows Lemma 3, Lemma 4 and Lemma 5, we have that

Es∼ρ1(s) [DTV(π1(a|s)∥π2(a|s))] ≤ DTV(ρ1(s, a)∥ρ2(s, a)) + DTV(ρ1(s)∥ρ2(s))
≤ 2DTV(ρ1(s, a)∥ρ2(s, a))

≤ 2

(
1

2
DKL(ρ1(s, a)∥ρ2(s, a))

) 1
2

≤ (2ϵπ)
1
2

(24)

After that, we also need to know the conclusion when it is extended to T -step OM.

Lemma 7. Assume the Kullback–Leibler divergence of two T -step normalized OM is bounded by
DKL

(
ρT1 (τ

T )∥ρT2 (τT )
)
≤ ϵπ , then we have that the policy discrepancy is bounded by

Es∼π1
[DTV(π1(a|s)∥π2(a|s))] ≤ (2ϵπ)

1
2 (25)

Proof. We begin the deviation by showing the relation of the Kullback–Leibler divergence of two
T -step normalized occupancy measure and the Kullback–Leibler divergence of two corresponding
1-step normalized occupancy measure:

DKL
(
ρT1 (τ

T )∥ρT2 (τT )
)
=
∑
τT

ρT1 (τ
T ) log

ρT1 (τ
T )

ρT2 (τ
T )

=
∑
τT

ρ1(s
0, a0)

T−1∏
t=1

π1(a
t|st)M(st|st−1, at−1) log

ρ1(s
0, a0)

∏T−1
t=1 π1(a

t|st)
ρ2(s0, a0)

∏T−1
t=1 π2(at|st)

=
∑
τT

ρ1(s
0, a0) log

ρ1(s
0, a0)

ρ2(s0, a0)

T−1∏
t=1

π1(a
t|st)M(st|st−1, at−1)

+
∑
τT

ρ1(s
0, a0)

T−1∏
t=1

π1(a
t|st)M(st|st−1, at−1) log

T−1∏
t=1

π1(a
t|st)

π2(at|st)
.

(26)
For the second term in Eq. (26), we denote P 1,T =

∏T−1
t=1 π(at|st)M(st|st−1, at−1), then we have

that: ∑
τT

ρ1(s
0, a0)

T−1∏
t=1

π1(a
t|st)M(st|st−1, at−1) log

T−1∏
t=1

π1(a
t|st)

π2(at|st)

=
∑
τT

ρ1(s
0, a0)

T−1∏
t=1

π1(a
t|st)M(st|st−1, at−1)

(
T−1∑
t=1

log
π1(a

t|st)
π2(at|st)

)

=
∑
s0,a0

ρ1(s
0, a0)

T−1∑
t=1

∑
s1,a1,s2,a2,··· ,aT−1

P 1,T log
π1(a

t|st)
π2(at|st)

=
∑
s0,a0

ρ1(s
0, a0)

T−1∑
t=1

∑
s1,a1,s2,a2,··· ,aT−1

P 1,T log
P 1,T

P 1,T π2(at|st)
π1(at|st)

=
∑
s0,a0

ρ1(s
0, a0)

T−1∑
t=1

DKL(P
1,T ∥P 1,T π2(a

t|st)
π1(at|st)

)

≥ 0 .

(27)
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For the first term in Eq. (26), we have that:∑
τT

ρ1(s
0, a0) log

ρ1(s
0, a0)

ρ2(s0, a0)

T−1∏
t=1

π1(a
t|st)M(st|st−1, at−1)

=
∑
s0,a0

ρ1(s
0, a0) log

ρ1(s
0, a0)

ρ2(s0, a0)

∑
τ−(s0,a0)

T−1∏
t=1

π1(a
t|st)M(st|st−1, at−1)

=
∑
s0,a0

ρ1(s
0, a0) log

ρ1(s
0, a0)

ρ2(s0, a0)

∑
τ

p(τ |s0, a0)

= DKL (ρ1(s, a)∥ρ2(s, a)) .

(28)

Therefore, we conclude that DKL (ρ1(s, a)∥ρ2(s, a)) ≤ DKL
(
ρT1 (τ

T )∥ρT2 (τT )
)
≤ ϵπ . Combining

Lemma 6 completes the proof.

Now we are ready to give the proof of Theorem 2.
Theorem 2 (Rollout Discrepancy of Multi-Step OM Matching). If the Kullback–Leibler divergence
of two T -step normalized OM is smaller than a certain error ϵπ , i.e., DKL

(
ρT1 (τ

T )∥ρT2 (τT )
)
≤ ϵπ ,

then we have that the discrepancy of the H-step normalized OM (H ≤ T ) is bounded by

DTV
(
ρH1 (s, a)∥ρH2 (s, a)

)
≤

√
2ϵπ(T −H + 1) . (29)

Proof. Before start, let us denote PH,T =
∏T−1
t=H π(a

t|st)M(st|st−1, at−1), MH,T =∏T−1
t=HM(st|st−1, at−1) and πH,T =

∏T−1
t=H π(a

t|st), then we have that:

DTV(ρ
T
1 (s, a)∥ρT2 (s, a)) ≤ DTV(ρ

H
1 (s, a)∥ρH2 (s, a)) + maxDTV

(
PH,T1 ∥PH,T2

)
(30)

We continue the deviation on the second term, which can be further decomposed as:

DTV

(
PH,T1 ∥PH,T2

)
≤ DTV

(
MH,T

1 ∥MH,T
2

)
+maxDTV

(
πH,T1 ∥πH,T2

)
. (31)

Since we always choose to rollout in the same environment for all policies, therefore there are no
difference between M1 and M2, which leads Ineq. (31) to a simpler form which contains only the
total variation of the policies.

DTV

(
PH,T1 ∥PH,T2

)
≤ maxDTV

(
πH,T1 ∥πH,T2

)
≤

T−1∑
t=H

max(DTV
(
π1(a

t|st)∥π2(at|st)
)
)

≤
√
2ϵπ(T −H) .

(32)

By the relation of the total variation and the Kullback–Leibler divergence we also have that:

DTV(ρ
H
1 (s, a)∥ρH2 (s, a)) ≤ (2ϵπ)

1
2 (33)

Therefore combining Ineq. (32) and Ineq. (33) we have completed the proof.

C Experiments

C.1 Implementation

To yield a more fair comparison, the implementation of all the algorithms is based on a same open-
source PyTorch framework5. The expert used for collecting the demonstration is trained via Soft
Actor-Critic (SAC) Haarnoja et al. [2018] based on the original implementaion6. For all policy and
value functions, we use a 2-layer MLP as the network structure. Particularly, for multi-step GAILs,
we concatenate the multi-step sequence as the input.

5https://github.com/KamyarGh/rl swiss
6https://github.com/rail-berkeley/softlearning
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C.2 Important Hyperparameters

We list all important hyperparameters in Tab. 1. Most of these hyperparameters are the default
without any finetuning, but we tune our experiments among the exploration ratio ϵ in a small range.

Table 1: Important Hyperparameters.

Environments Hop. Walk. Half. Ant

Hyperparameters of MS-GAIL

Trajectory maximum length 1000
Optimizer AdamOptimizer
Discount factor γ 0.99
Replay buffer size 2e5
Batch size 256
Generative adversarial reward form logD − log (1−D)
Q learning rate 3e-4
π learning rate 3e-4
D learning rate 3e-4
Gradient penalty weight 4.0 8.0 16.0 0.5
Reward scale 2.0

Hyperparameters of AutoGAIL Exploration Ratio Epsilon ϵ [0.0, 0.05, 0.1, 0.2, 0.3]
Step Length T 4

C.3 Additional Results

Quantitative results.

The exact quantitative experiment results of Fig. 2 are shown in Tab. 2, where all methods are eval-
uated on {1, 4, 8} demonstrations over more than 5 random seeds. On most of the tasks, MS-GAIL
achieves better performance than the normal 1-step GAIL, indicating the potential of minimizing a
multi-step objective. However, the optimal step length T is hard to be determined under different
settings. As a comparison, AutoGAIL offers a great choice for balancing the trade-off between the
rollout discrepancy and the sample complexity, which is able to reach the best or close to the best
performance among all tasks.

Learning curves.

We illustrate the complete learning curves on all tasks to compare the learning efficiency of these
methods in Fig. 5. The curves provide strong evidence that AutoGAIL owns competitive learning
efficiency against all multi-step GAIL baselines. Although on different environments with different
counts of demonstration, the leader always changes hands, AutoGAIL is stable and is not affected
much by the setting. Specifically, AutoGAIL wins on the HalfCheetah of 1 and 8 expert trajectories
with large margins; 1-step GAIL always results in a quick convergence on Ant, but the final perfor-
mance leaves a gap between the other MS-GAIL and AutoGAIL; on Hopper and Walker, AutoGAIL
always shares the fast efficiency with MS-GAIL of different step lengths.

Table 2: Quantitative results for all methods on different count of demonstrations. The means and the standard
deviations are evaluated over more than 5 random seeds.

Hopper Walker2d HalfCheetah Ant

Random 13.09 ± 0.10 7.07 ± 0.13 74.48 ± 12.39 713.59 ± 203.92

1 Demo

1-Step GAIL 3295.41 ± 42.76 4246.59 ± 264.35 11249.05 ± 978.32 5021.4 ± 338.5
2-Step GAIL 3260.08 ± 196.27 4331.55 ± 195.65 12642.07 ± 787.04 4968.07 ± 269.98
3-Step GAIL 3333.04 ± 80.23 4542.61 ± 33.89 12131.73 ± 1616.28 4597.46 ± 185.34
4-Step GAIL 3309.43 ± 99.53 4383.99 ± 327.86 499.35 ± 711.79 5028.79 ± 243.5
Auto-GAIL 3321.24 ± 93.5 4559.91 ± 293.77 13380.29 ± 1014.81 5181.33 ± 165.73

4 Demo

1-Step GAIL 3342.29 ± 17.95 4267.63 ± 381.81 11751.97 ± 1077.34 5088.27 ± 449.07
2-Step GAIL 3376.11 ± 13.77 4538.97 ± 173.3 13504.01 ± 620.4 5185.44 ± 134.84
3-Step GAIL 3395.95 ± 10.23 4565.8 ± 125.85 12988.54 ± 1528.38 5140.87 ± 286.02
4-Step GAIL 3398.34 ± 19.96 4588.79 ± 65.7 12956.38 ± 1342.46 5126.84 ± 260.11
Auto-GAIL 3425.21 ± 10.01 4605.17 ± 130.45 14540.69 ± 103.59 5219.97 ± 190.87

8 Demo

1-Step GAIL 3337.9 ± 13.24 4419.84± 152.7 11473.72 ± 749.37 5199.73 ± 248.32
2-Step GAIL 3384.91 ± 24.03 4580.16 ± 158.37 13622.72 ± 719.07 5273.29 ± 131.1
3-Step GAIL 3397.58 ± 11.24 4627.5 ± 193.67 14450.49 ± 373.77 5242.05 ± 132.86
4-Step GAIL 3406.24 ± 18.88 4686.19 ± 199.41 13907.51 ± 633.84 5227.89 ± 153.35
Auto-GAIL 3404.24 ± 13.4 4697.99 ± 73.29 14295.69 ± 324.88 5308.34 ± 117.38

Expert (SAC) 3402.94 ± 446.48 5639.32 ± 29.97 13711.64 ± 111.47 5404.55 ± 1520.49
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(a) 1 demonstration.
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(b) 4 demonstration.
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(c) 8 demonstration.

Figure 5: Learning curves with different numbers of demonstration.

Curriculum selection.

We also provide the complete curves of the selection of the curriculum during the training pro-
cess on each task against the random MS-GAIL baselines, which selects the curriculum randomly
at each training iteration. Interestingly, the random strategy is competitive with AutoGAIL on a
considerable number of tasks, showing that the imitation learning results benefit a lot from even
a random multi-step strategy. However, examples as on Walker with 1 demonstration, on Hopper
with 4 demonstrations and on every Ant task, still indicate that the random strategy causes instabil-
ity or inefficiency. Notably, on HalfCheetah, AutoGAIL tends to choose the step length as 2 or 3,
this meets the averaged choice of random MS-GAIL, and therefore the training processes are very
similar.

17



0 0.8 1.6 2.4 3.2 4.0 4.8 5.7e60

2000

Av
er

ag
e 

Re
tu

rn Hopper-v2

0 0.4 1.2 2.0 2.8 3.6 4.4e70

2000

4000
Walker-v2

0 1.1 2.2 3.3 4.4 5.5 6.6e70

5000

10000

HalfCheetah-v2

0 0.4 0.8 1.2 1.6e70

2000

4000

Ant-v2

0 0.8 1.6 2.4 3.2 4.0 4.8 5.7e61

2

3

4

Cu
rri

cu
lu

m

0 0.4 1.2 2.0 2.8 3.6 4.4e71

2

3

4

0 1.1 2.2 3.3 4.4 5.5 6.6e71

2

3

4

Auto-GAIL Random Multi-Step GAIL 1-Step-GAIL

0 0.4 0.8 1.2 1.6e71

2

3

4

Steps

(a) 1 demonstration.

0 0.8 1.6 2.4 3.2 4.0e60

2000

Av
er

ag
e 

Re
tu

rn Hopper-v2

0 0.4 1.2 2.0 2.8 3.6 4.4e70

2000

4000
Walker-v2

0 0.6 1.4 2.2 3.0 3.8 4.6e70

5000

10000

HalfCheetah-v2

0 0.4 0.8 1.2 1.6e70

2000

4000

Ant-v2

0 0.8 1.6 2.4 3.2 4.0e61

2

3

4

Cu
rri

cu
lu

m

0 0.4 1.2 2.0 2.8 3.6 4.4e71

2

3

4

0 0.6 1.4 2.2 3.0 3.8 4.6e71

2

3

4

Auto-GAIL Random Multi-Step GAIL 1-Step-GAIL

0 0.4 0.8 1.2 1.6e71

2

3

4

Steps

(b) 4 demonstration.

0 0.8 1.6 2.4 3.2 4.0 4.8 5.7e60

2000

Av
er

ag
e 

Re
tu

rn Hopper-v2

0 0.4 1.2 2.0 2.8 3.6 4.4e70

2000

4000
Walker-v2

0 1.1 2.2 3.3 4.4 5.5 6.6e70

5000

10000

HalfCheetah-v2

0 0.4 0.8 1.2 1.6e70

2000

4000

Ant-v2

0 0.8 1.6 2.4 3.2 4.0 4.8 5.7e61

2

3

4

Cu
rri

cu
lu

m

0 0.4 1.2 2.0 2.8 3.6 4.4e71

2

3

4

0 1.1 2.2 3.3 4.4 5.5 6.6e71

2

3

4

Auto-GAIL Random Multi-Step GAIL 1-Step-GAIL

0 0.4 0.8 1.2 1.6e71

2

3

4

Steps

(c) 8 demonstration.

Figure 6: Curriculum selection with different numbers of demonstration.
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